Problems

Age
Difficulty
Found: 1155

Prove that the midpoints of the sides of a regular polygon form a regular polygon.

Two circles \(c\) and \(d\) are tangent at point \(B\). Two straight lines intersecting the first circle at points \(D\) and \(E\) and the second circle at points \(G\) and \(F\) are drawn through the point \(B\). Prove that \(ED\) is parallel to \(FG\).

A ream of squared paper is shaded in two colours. Prove that there are two horizontal and two vertical lines, the points of intersection of which are shaded in the same colour.

There are 5 points inside an equilateral triangle with side of length 1. Prove that the distance between some two of them is less than 0.5.

a) A square of area 6 contains three polygons, each of area 3. Prove that among them there are two polygons that have an overlap of area no less than 1.

b) A square of area 5 contains nine polygons of area 1. Prove that among them there are two polygons that have an overlap of area no less than \(\frac{1}{9}\).

In a volleyball tournament teams play each other once. A win gives the team 1 point, a loss 0 points. It is known that at one point in the tournament all of the teams had different numbers of points. How many points did the team in second last place have at the end of the tournament, and what was the result of its match against the eventually winning team?

An endless board is painted in three colours (each cell is painted in one of the colours). Prove that there are four cells of the same colour, located at the vertices of the rectangle with sides parallel to the side of one cell.

On a plane, six points are given so that no three of them lie on the same line. Each pair of points is connected by a blue or red segment.

Prove that among these points three such points can be chosen so that all sides of the triangle formed by them will be of the same colour.