Problems

Age
Difficulty
Found: 1468

There are several squares on a rectangular sheet of chequered paper of size \(m \times n\) cells, the sides of which run along the vertical and horizontal lines of the paper. It is known that no two squares coincide and no square contains another square within itself. What is the largest number of such squares?

A square \(ABCD\) contains 5 points. Prove that the distance between some pair of these points does not exceed \(\frac{1}{2} AC\).

The numbers \(a_1, a_2, \dots , a_{1985}\) are the numbers \(1, 2, \dots , 1985\) rearranged in some order. Each number \(a_k\) is multiplied by its number \(k\), and then the largest number is chosen among the resulting 1985 products. Prove that it is not less than \(993^2\).

In March 2015 a teacher ran 11 sessions of a maths club. Prove that if no sessions were run on Saturdays or Sundays there must have been three days in a row where a session of the club did not take place. The 1st March 2015 was a Sunday.

In a group of seven boys, everyone has at least three brothers who are in that group. Prove that all seven are brothers.

Prove that there is a number of the form

a) \(1989 \dots 19890 \dots 0\) (the number 1989 is repeated several times, and then there are a few zeros), which is divisible by 1988;

b) \(1988 \dots 1988\), which is divisible by 1989.

Prove that amongst the numbers of the form \[19991999\dots 19990\dots 0\] – that is 1999 a number of times, followed by a number of 0s – there will be at least one divisible by 2001.

Replace the question marks with the appropriate letters or words:

a) r, o, y, g, b, ?, ?;

b) a, c, f, j, ?, ?;

c) one, three, five, ?,

d) A, H, I, M, O, T, U, ?, ?, ?, ?;

e) o, t, t, f, f, s, s, e, ?, ?.

A square piece of paper is cut into 6 pieces, each of which is a convex polygon. 5 of the pieces are lost, leaving only one piece in the form of a regular octagon (see the drawing). Is it possible to reconstruct the original square using just this information?