In a group of seven boys, everyone has at least three brothers who are in that group. Prove that all seven are brothers.
Prove that there is a number of the form
a) \(1989 \dots 19890 \dots 0\) (the number 1989 is repeated several times, and then there are a few zeros), which is divisible by 1988;
b) \(1988 \dots 1988\), which is divisible by 1989.
Prove that amongst the numbers of the form \[19991999\dots 19990\dots 0\] – that is 1999 a number of times, followed by a number of 0s – there will be at least one divisible by 2001.
Replace the question marks with the appropriate letters or words:
a) r, o, y, g, b, ?, ?;
b) a, c, f, j, ?, ?;
c) one, three, five, ?,
d) A, H, I, M, O, T, U, ?, ?, ?, ?;
e) o, t, t, f, f, s, s, e, ?, ?.
A square piece of paper is cut into 6 pieces, each of which is a convex polygon. 5 of the pieces are lost, leaving only one piece in the form of a regular octagon (see the drawing). Is it possible to reconstruct the original square using just this information?
a) We are given two cogs, each with 14 teeth. They are placed on top of one another, so that their teeth are in line with one another and their projection looks like a single cog. After this 4 teeth are removed from each cog, the same 4 teeth on each one. Is it always then possible to rotate one of the cogs with respect to the other so that the projection of the two partially toothless cogs appears as a single complete cog? The cogs can be rotated in the same plane, but cannot be flipped over.
b) The same question, but this time two cogs of 13 teeth each from which 4 are again removed?
What is the minimum number of squares that need to be marked on a chessboard, so that:
1) There are no horizontally, vertically, or diagonally adjacent marked squares.
2) Adding any single new marked square breaks rule 1.
A staircase has 100 steps. Vivian wants to go down the stairs, starting from the top, and she can only do so by jumping down and then up, down and then up, and so on. The jumps can be of three types – six steps (jumping over five to land on the sixth), seven steps or eight steps. Note that Vivian does not jump onto the same step twice. Will she be able to go down the stairs?
Find the number of solutions in natural numbers of the equation \(\lfloor x / 10\rfloor = \lfloor x / 11\rfloor + 1\).
A gang contains 101 gangsters. The whole gang has never taken part in a raid together, but every possible pair of gangsters have taken part in a raid together exactly once. Prove that one of the gangsters has taken part in no less than 11 different raids.