Problems

Age
Difficulty
Found: 1468

In a chess tournament, each participant played two games with each of the other participants: one with white pieces, the other with black. At the end of the tournament, it turned out that all of the participants scored the same number of points (1 point for a victory, \(\frac{1}{2}\) a point for a draw and 0 points for a loss). Prove that there are two participants who have won the same number of games using white pieces.

In a mathematical olympiad, \(m>1\) candidates solved \(n>1\) problems. Each candidate solved a different number of problems to all the others. Each problem was solved by a different number of candidates to all the others. Prove that one of the candidates solved exactly one problem.

The surface of a \(3\times 3\times 3\) Rubik’s Cube contains \(54\) squares. What is the maximum number of squares we can mark so that no marked squares share at least one vertex?

Make sure you show that both (a) you can achieve this maximum and (b) that you can’t do better than this maximum.

The centres of all unit squares are marked in a \(10 \times 10\) chequered box (100 points in total). What is the smallest number of lines, that are not parallel to the sides of the square, that are needed to be drawn to erase all of the marked points?

Some squares on a chess board contain a chess piece. It is known that each row contains at least one chess piece, but that different rows all have different numbers of pieces. Prove that it is always possible to mark 8 pieces so that each row and each column of the board contains exactly one marked piece.

Prove that any convex polygon contains not more than \(35\) vertices with an angle of less than \(170^\circ\).

On the sides \(AB\), \(BC\) and \(AC\) of the triangle \(ABC\) points \(P\), \(M\) and \(K\) are chosen so that the segments \(AM\), \(BK\) and \(CP\) intersect at one point and \[\vec{AM} + \vec{BK}+\vec{CP} = 0\] Prove that \(P\), \(M\) and \(K\) are the midpoints of the sides of the triangle \(ABC\).

A circle is covered with several arcs. These arcs can overlap one another, but none of them cover the entire circumference. Prove that it is always possible to select several of these arcs so that together they cover the entire circumference and add up to no more than \(720^{\circ}\).