100 queens, that cannot capture each other, are placed on a \(100 \times 100\) chessboard. Prove that at least one queen is in each \(50 \times 50\) corner square.
In 25 boxes there are spheres of different colours. It is known that for any \(k\) where \(1 \leq k \leq 25\) in any \(k\) of the boxes there are spheres of exactly \(k+1\) different colours. Prove that a sphere of one particular colour lies in every single box.
The water level in a pool is given by a quadratic function \(h(t) = at^2 + bt + c\), where \(t\) is measured in hours.
At the moment when the pool is completely drained, say at time \(t_0\), we have \(h(t_0) = 0\) and \(h'(t_0) = 0\).
It is also known that after the first hour, the water level has dropped to exactly half of its original value: \(h(1) = \tfrac{1}{2} h(0)\).
How many hours does it take for the pool to drain completely?
The function \(f (x)\) is defined on the positive real \(x\) and takes only positive values. It is known that \(f (1) + f (2) = 10\) and \(f(a+b) = f(a) + f(b) + 2\sqrt{f(a)f(b)}\) for any \(a\) and \(b\). Find \(f (2^{2011})\).
On a chessboard, \(n\) white and \(n\) black rooks are arranged so that the rooks of different colours cannot capture one another. Find the greatest possible value of \(n\).
There are a thousand tickets with numbers 000, 001, ..., 999 and a hundred boxes with the numbers 00, 01, ..., 99. A ticket is allowed to be dropped into a box if the number of the box can be obtained from the ticket number by erasing one of the digits. Is it possible to arrange all of the tickets into 50 boxes?
The sequence of numbers \(a_1, a_2, \dots\) is given by the conditions \(a_1 = 1\), \(a_2 = 143\) and
for all \(n \geq 2\).
Prove that all members of the sequence are integers.
Solve the inequality: \(\lfloor x\rfloor \times \{x\} < x - 1\).
Can 100 weights of masses 1, 2, 3, ..., 99, 100 be arranged into 10 piles of different masses so that the following condition is fulfilled: the heavier the pile, the fewer weights in it?
When cleaning her children’s room, a mother found \(9\) socks. In a group of any \(4\) of the socks at least two belonged to the same child. In a group of any \(5\) of the socks no more than \(3\) had the same owner. How many children are there in the room and how many socks belong to each child?