When boarding a plane, a line of \(n\) passengers was formed, each of whom has a ticket for one of the \(n\) places. The first in the line is a crazy old man. He runs onto the plane and sits down in a random place (perhaps, his own). Then passengers take turns to take their seats, and in the case that their place is already occupied, they sit randomly on one of the vacant seats. What is the probability that the last passenger will take his assigned seat?
We are given 101 natural numbers whose sum is equal to 200. Prove that we can always pick some of these numbers so that the sum of the picked numbers is 100.
Find all functions \(f (x)\) defined for all real values of \(x\) and satisfying the equation \(2f (x) + f (1 - x) = x^2\).
Let \(f (x)\) be a polynomial about which it is known that the equation \(f (x) = x\) has no roots. Prove that then the equation \(f (f (x)) = x\) does not have any roots.
Prove that in any group of friends there will be two people who have the same number of friends.
Upon the installation of a keypad lock, each of the 26 letters located on the lock’s keypad is assigned an arbitrary natural number known only to the owner of the lock. Different letters do not necessarily have different numbers assigned to them. After a combination of different letters, where each letter is typed once at most, is entered into the lock a summation is carried out of the corresponding numbers to the letters typed in. The lock opens only if the result of the summation is divisible by 26. Prove that for any set of numbers assigned to the 26 letters, there exists a combination that will open the lock.
In an \(n\) by \(n\) grid, \(2n\) of the squares are marked. Prove that there will always be a parallelogram whose vertices are the centres of four of the squares somewhere in the grid.
A hostess bakes a cake for some guests. Either 10 or 11 people can come to her house. What is the smallest number of pieces she needs to cut the cake into (in advance) so that it can be divided equally between 10 and 11 guests?
Three friends decide, by a coin toss, who goes to get the juice. They have one coin. How do they arrange coin tosses so that all of them have equal chances to not have to go and get the juice?
26 numbers are chosen from the numbers 1, 2, 3, ..., 49, 50. Will there always be two numbers chosen whose difference is 1?