Problems

Age
Difficulty
Found: 1155

The bisector of the outer corner at the vertex \(C\) of the triangle \(ABC\) intersects the circumscribed circle at the point \(D\). Prove that \(AD = BD\).

Let \(a\) and \(b\) be the lengths of the sides of a right-angled triangle and \(c\) the length of its hypotenuse. Prove that:

a) The radius of the inscribed circle of the triangle is \((a + b - c)/2\);

b) The radius of the circle that is tangent to the hypotenuse and the extensions of the sides of the triangle, is equal to \((a + b + c)/2\).

Prove that a convex quadrilateral \(ABCD\) can be drawn inside a circle if and only if \(\angle ABC + \angle CDA = 180^{\circ}\).

The triangle \(ABC\) is given. Find the locus of the point \(X\) satisfying the inequalities \(AX \leq CX \leq BX\).

Construct a straight line passing through a given point and tangent to a given circle.

Three segments whose lengths are equal to \(a, b\) and \(c\) are given. Construct a segment of length: a) \(ab/c\); b) \(\sqrt {ab}\).

Solve the equations in integers:

a) \(3x^2 + 5y^2 = 345\);

b) \(1 + x + x^2 + x^3 = 2^y\).

In honor of the March 8 holiday, a competition of performances was organized. Two performances reached the final. \(N\) students of the 5th grade played in the first one and \(n\) students of the 4th grade played in the second one. The performance was attended by \(2n\) mothers of all \(2n\) students. The best performance is chosen by a vote of the mothers. It is known that half of the mothers vote honestly, i.e. for the performance that was truly better and the mothers of the other half in any case vote for the performance in which their child participates.

a) Find the probability of the best performance winning by a majority of votes.

b) The same question but this time more than two performances made it to the final.

A square \(4 \times 4\) is called magic if all the numbers from 1 to 16 can be written into its cells in such a way that the sums of numbers in columns, rows and two diagonals are equal to each other. Sixth-grader Edwin began to make a magic square and written the number 1 in certain cell. His younger brother Theo decided to help him and put the numbers \(2\) and \(3\) in the cells adjacent to the number \(1\). Is it possible for Edwin to finish the magic square after such help?

Is it possible to cut such a hole in \(10\times 10 \,\,cm^2\) piece of paper, though which you can step?