Let \(a\) and \(b\) be positive real numbers. Using volumes
of cubes and parallelepipeds, show that \((a+b)^3 = a^3 +3a^2b+3ab^2 +b^3\).
Hint: Place the cubes with sides \(a\)
and \(b\) along the same diagonal.
The real numbers \(a,b,c\) are non-zero and satisfy the following equations: \[\left\{ \begin{array}{l} a^2 +a = b^2 \\ b^2 +b = c^2 \\ c^2 +c = a^2. \end{array} \right.\] Show that \((a-b)(b-c)(c-a)=1\).
A five-digit number is called indecomposable if it is not decomposed into the product of two three-digit numbers. What is the largest number of indecomposable five-digit numbers that can come in a row?
Let \(a\) and \(b\) be real numbers. Find a representation of \(a^3 + b^3\) as a product.
Find a representation of the number \(117 = 121-4\) as a product.
Let \(a\) and \(b\) be real numbers. Find a representation of \(a^2 - b^2\) as a product.
Find all solutions of the equation: \(x^2 + y^2 + z^2 + t^2 = x(y + z + t)\).
Find all solutions of the system of equations: \[\left\{ \begin{aligned} x+y+z = a\\ x^2 + y^2+z^2 = a^2\\ x^3+y^3+z^3 = a^3 \end{aligned} \right.\]
Now there are three doors with statements on them:
There is nothing behind the third door.
There is a trap behind the first door.
There is nothing behind this door.
Your guide says: There is treasure behind one of the doors, trap
behind another one and there is nothing behind the third door. The sign
on the door leading to treasure is true, the sign on the door leading to
a trap is false, and the third sign might be true or false.
Which door will you open, if you really really want the treasure?
This is a famous problem, called Monty Hall problem after a popular
TV show in America.
In the problem, you are on a game show, being asked to choose between
three doors. Behind each door, there is either a car or a goat. You
choose a door. The host, Monty Hall, picks one of the other doors, which
he knows has a goat behind it, and opens it, showing you the goat. (You
know, by the rules of the game, that Monty will always reveal a goat.)
Monty then asks whether you would like to switch your choice of door to
the other remaining door. Assuming you prefer having a car more than
having a goat, do you choose to switch or not to switch?
Draw how Robinson Crusoe should put pegs and ropes to tie his goat in order for the goat to graze grass in the shape of a square, or slightly harder in a shape of a given rectangle.