Calculate \(\int_0^{\pi/2} (\sin^2 (\sin x) + \cos^2 (\cos x))\,dx\).
Prove that rational numbers from \([0; 1]\) can be covered by a system of intervals of total length no greater than \(1/1000\).
Does a continuous function that takes every real value exactly 3 times exist?
Prove that there are infinitely many composite numbers among the numbers \(\lfloor 2^k \sqrt{2}\rfloor\) (\(k = 0, 1, \dots\)).
Prove the irrationality of the following numbers:
a) \(\sqrt{3}{17}\)
b) \(\sqrt{2} + \sqrt{3}\)
c) \(\sqrt{2} + \sqrt{3} + \sqrt{5}\)
d) \(\sqrt{3}{3} - \sqrt{2}\)
e) \(\cos 10^{\circ}\)
f) \(\tan 10^{\circ}\)
g) \(\sin 1^{\circ}\)
h) \(\log_{2}3\)
Is it possible for
a) the sum of two rational numbers irrational?
b) the sum of two irrational numbers rational?
c) an irrational number with an irrational degree to be rational?
Prove that the following polynomial does not have any identical roots: \(P(x) = 1 + x + x^2/2! + \dots + x^n/n!\)
Prove that the polynomial \(x^{2n} - nx^{n + 1} + nx^{n - 1} - 1\) for \(n > 1\) has a triple root of \(x = 1\).
It is known that \(\cos \alpha^{\circ} = 1/3\). Is \(\alpha\) a rational number?
Let \(f (x)\) be a polynomial of degree \(n\) with roots \(\alpha_1, \dots , \alpha_n\). We define the polygon \(M\) as the convex hull of the points \(\alpha_1, \dots , \alpha_n\) on the complex plane. Prove that the roots of the derivative of this polynomial lie inside the polygon \(M\).