Problems

Age
Difficulty
Found: 1096

Prove the irrationality of the following numbers:

a) \(\sqrt{3}{17}\)

b) \(\sqrt{2} + \sqrt{3}\)

c) \(\sqrt{2} + \sqrt{3} + \sqrt{5}\)

d) \(\sqrt{3}{3} - \sqrt{2}\)

e) \(\cos 10^{\circ}\)

f) \(\tan 10^{\circ}\)

g) \(\sin 1^{\circ}\)

h) \(\log_{2}3\)

Is it possible for

a) the sum of two rational numbers irrational?

b) the sum of two irrational numbers rational?

c) an irrational number with an irrational degree to be rational?

Prove that the following polynomial does not have any identical roots: \(P(x) = 1 + x + x^2/2! + \dots + x^n/n!\)

Prove that the polynomial \(x^{2n} - nx^{n + 1} + nx^{n - 1} - 1\) for \(n > 1\) has a triple root of \(x = 1\).

Let \(f (x)\) be a polynomial of degree \(n\) with roots \(\alpha_1, \dots , \alpha_n\). We define the polygon \(M\) as the convex hull of the points \(\alpha_1, \dots , \alpha_n\) on the complex plane. Prove that the roots of the derivative of this polynomial lie inside the polygon \(M\).

a) Using geometric considerations, prove that the base and the side of an isosceles triangle with an angle of \(36^{\circ}\) at the vertex are incommensurable.

b) Invent a geometric proof of the irrationality of \(\sqrt{2}\).