100 fare evaders want to take a train, consisting of 12 coaches, from the first to the 76th station. They know that at the first station two ticket inspectors will board two coaches. After the 4th station, in the time between each station, one of the ticket inspectors will cross to a neighbouring coach. The ticket inspectors take turns to do this. A fare evader can see a ticket inspector only if the ticket inspector is in the next coach or the next but one coach. At each station each fare evader has time to run along the platform the length of no more than three coaches – for example at a station a fare evader in the 7th coach can run to any coach between the 4th and 10th inclusive and board it. What is the largest number of fare evaders that can travel their entire journey without ever ending up in the same coach as one of the ticket inspectors, no matter how the ticket inspectors choose to move? The fare evaders have no information about the ticket inspectors beyond that which is given here, and they agree their strategy before boarding.
9 straight lines each divide a square into two quadrilaterals, with their areas having a ratio of \(2:3\). Prove that at least three of the nine lines pass through the same point.
Prove that for any number \(d\), which is not divisible by \(2\) or by \(5\), there is a number whose decimal notation contains only ones and which is divisible by \(d\).
Two people toss a coin: one tosses it 10 times, the other – 11 times. What is the probability that the second person’s coin showed heads more times than the first?
On a line, there are 50 segments. Prove that either it is possible to find some 8 segments all of which have a shared intersection, or there can be found 8 segments, no two of which intersect.
There are 30 students in the class. Prove that the probability that some two students have the same birthday is more than 50%.
One of \(n\) prizes is embedded in each chewing gum pack, where each prize has probability \(1/n\) of being found.
How many packets of gum, on average, should I buy to collect the full collection prizes?
\(2n\) diplomats sit around a round table. After a break the same \(2n\) diplomats sit around the same table, but this time in a different order.
Prove that there will always be two diplomats with the same number of people sitting between them, both before and after the break.
A gang contains 50 gangsters. The whole gang has never taken part in a raid together, but every possible pair of gangsters has taken part in a raid together exactly once. Prove that one of the gangsters has taken part in no less than 8 different raids.
10 natural numbers are written on a blackboard. Prove that it is always possible to choose some of these numbers and write “\(+\)” or “\(-\)” between them so that the resulting algebraic sum is divisible by 1001.