Problems

Age
Difficulty
Found: 819

One of \(n\) prizes is embedded in each chewing gum pack, where each prize has probability \(1/n\) of being found.

How many packets of gum, on average, should I buy to collect the full collection prizes?

\(2n\) diplomats sit around a round table. After a break the same \(2n\) diplomats sit around the same table, but this time in a different order.

Prove that there will always be two diplomats with the same number of people sitting between them, both before and after the break.

A gang contains 50 gangsters. The whole gang has never taken part in a raid together, but every possible pair of gangsters has taken part in a raid together exactly once. Prove that one of the gangsters has taken part in no less than 8 different raids.

10 natural numbers are written on a blackboard. Prove that it is always possible to choose some of these numbers and write “\(+\)” or “\(-\)” between them so that the resulting algebraic sum is divisible by 1001.

Prove that there exist numbers, that can be presented in no fewer than 100 ways in the form of a summation of 20001 terms, each of which is the 2000th power of a whole number.

A city in the shape of a triangle is divided into 16 triangular blocks, at the intersection of any two streets is a square (there are 15 squares in the city). A tourist began to walk around the city from a certain square and travelled along some route to some other square, whilst visiting every square exactly once. Prove that in the process of travelling the tourist at least 4 times turned by \(120^{\circ}\).

Prove that a convex quadrilateral \(ICEF\) can contain a circle if and only if \(IC+EH = CE+IF\).

Daniel has drawn on a sheet of paper a circle and a dot inside it. Show that he can cut a circle into two parts which can be used to make a circle in which the marked point would be the center.