We call a triple of natural numbers (also known as positive integers) \((a,b,c)\) satisfying \(a^2+b^2=c^2\) a Pythagorean triple. If, further, \(a\), \(b\) and \(c\) are relatively prime, then we say that \((a,b,c)\) is a primitive Pythagorean triple.
Show that every primitive Pythagorean triple can be written in the form \((u^2-v^2,2uv,u^2+v^2)\) for some coprime positive integers \(u>v\).
The lengths of three sides of a right-angled triangle are all integers.
Show that one of them is divisible by \(5\).
There are two imposters and seven crewmates on the rocket ‘Plus’. How many ways are there for the nine people to split into three groups of three, such that each group has at least two crewmates? The two imposters and seven crewmates are all distinguishable from each other, but we’re not concerned with the order of the three groups.
For example: \(\{I_1,C_1,C_2\}\), \(\{I_2,C_3,C_4\}\) and \(\{C_5,C_6,C_7\}\) is the same as \(\{C_3,C_4,I_2\}\), \(\{C_5,C_6,C_7\}\) and \(\{I_1,C_2,C_1\}\) but different from \(\{I_2,C_1,C_2\}\), \(\{I_1,C_3,C_4\}\) and \(\{C_5,C_6,C_7\}\).
Draw the plane tiling with regular hexagons.
Let \(\sigma(n)\) be the sum of the divisors of \(n\). For example, \(\sigma(12)=1+2+3+4+6+12=28\). We use \(\gamma\) to denote the Euler-Mascheroni constant - one way to define this is as \(\gamma:=\lim_{n\to\infty}(\sum_{k=1}^n\frac{1}{n}-\log n)\).
Prove that \(\sigma(n)<e^{\gamma}n\log\log n\) for all integers \(n>5040\).
Can you tile the plane with regular octagons?
Draw how to tile the whole plane with figures, composed from squares \(1\times 1\), \(2\times 2\), \(3\times 3\), \(4\times 4\), and \(5\times 5\) where squares of all sizes are used the same amount of times in the design of the figure.
Show that if \(1+2+\dots+n = \frac{n(n+1)}{2}\), then \(1+2+\dots+(n+1) = \frac{(n+1)((n+1)+1)}{2}\).
Show that \(1+2+\dots+n = \frac{n(n+1)}{2}\) for every natural number \(n\).
Show that if \(1+2^1+2^2+\dots+2^{10} = 2^{11} - 1\), then \(1+2^1+2^2+\dots+2^{11} = 2^{12} - 1\).