Problems

Age
Difficulty
Found: 2624

Let it be known that all the roots of some equation \(x^3 + px^2 + qx + r = 0\) are positive. What additional condition must be satisfied by its coefficients \(p, q\) and \(r\) in order for it to be possible to form a triangle from segments whose lengths are equal to these roots?

Prove the equalities:

a) \(\overline{z+w} = \overline{z} + \overline{w}\); b) \(\overline{zw} = \overline{z} \overline{w}\); c) \(\overline{\frac{z}{w}} = \frac{\overline{z}}{\overline{w}}\); d) \(|\overline{z}| = |z|\); d) \(\overline{\overline{z}} = z\).

Prove the equalities:

a) \(z + \overline {z} = 2 \operatorname{Re} z\);

b) \(z - \overline {z} = 2i \operatorname{Im} z\);

c) \(\overline {z} z = |z|^2\).

Let \(z_1\) and \(z_2\) be fixed points of a complex plane. Give a geometric description of the sets of all points \(z\) that satisfy the conditions:

a) \(\operatorname{arg} \frac{z - z_1}{z - z_2} = 0\);

b) \(\operatorname{arg} \frac{z_1 - z}{z - z_2} = 0\).

Prove the formulae: \(\arcsin (- x) = - \arcsin x\), \(\arccos (- x) = \pi - \arccos x\).

Prove that amongst any 7 different numbers it is always possible to choose two of them, \(x\) and \(y\), so that the following inequality was true: \[0 < \frac{x-y}{1+xy} < \frac{1}{\sqrt3}.\]

An iterative polyline serves as a geometric interpretation of the iteration process. To construct it, on the \(Oxy\) plane, the graph of the function \(f (x)\) is drawn and the bisector of the coordinate angle is drawn, as is the straight line \(y = x\). Then on the graph of the function the points \[A_0 (x_0, f (x_0)), A_1 (x_1, f (x_1)), \dots, A_n (x_n, f (x_n)), \dots\] are noted and on the bisector of the coordinate angle – the points \[B_0 (x_0, x_0), B_1 (x_1, x_1), \dots , B_n (x_n, x_n), \dots.\] The polygonal line \(B_0A_0B_1A_1 \dots B_nA_n \dots\) is called iterative.

Construct an iterative polyline from the following information:

a) \(f (x) = 1 + x/2\), \(x_0 = 0\), \(x_0 = 8\);

b) \(f (x) = 1/x\), \(x_0 = 2\);

c) \(f (x) = 2x - 1\), \(x_0 = 0\), \(x_0 = 1{,}125\);

d) \(f (x) = - 3x/2 + 6\), \(x_0 = 5/2\);

e) \(f (x) = x^2 + 3x - 3\), \(x_0 = 1\), \(x_0 = 0{,}99\), \(x_0 = 1{,}01\);

f) \(f (x) = \sqrt{1 + x}\), \(x_0 = 0\), \(x_0 = 8\);

g) \(f (x) = x^3/3 - 5x^2/x + 25x/6 + 3\), \(x_0 = 3\).

The sequence of numbers \(a_n\) is given by the conditions \(a_1 = 1\), \(a_{n + 1} = a_n + 1/a^2_n\) (\(n \geq 1\)).

Is it true that this sequence is limited?

The numbers \(a_1, a_2, \dots , a_k\) are such that the equality \(\lim\limits_{n\to\infty} (x_n + a_1x_{n - 1} + \dots + a_kx_{n - k}) = 0\) is possible only for those sequences \(\{x_n\}\) for which \(\lim\limits_{n\to\infty} x_n = 0\). Prove that all the roots of the polynomial P \((\lambda) = \lambda^k + a_1 \lambda^{k-1} + a_2 \lambda^{k -2} + \dots + a_k\) are modulo less than 1.