Problems

Age
Difficulty
Found: 546

Will thought of a number: 1, 2 or 3. You can ask him only one question, to which he can answer “yes”, “no” or “I do not know”. Can you guess the number by asking just one question?

The following words/sounds are given: look, yar, yell, lean, lease. Determine what will happen if the sounds that make up these words are pronounced in reverse order.

In the entry \({*} + {*} + {*} + {*} + {*} + {*} + {*} + {*} = {*}{*}\) replace the asterisks with different digits so that the equality is correct.

A chequered strip of \(1 \times N\) is given. Two players play the game. The first player puts a cross into one of the free cells on his turn, and subsequently the second player puts a nought in another one of the cells. It is not allowed for there to be two crosses or two noughts in two neighbouring cells. The player who is unable to make a move loses.

Which of the players can always win (no matter how their opponent played)?

A pack of 36 cards was placed in front of a psychic face down. He calls the suit of the top card, after which the card is opened, shown to him and put aside. After this, the psychic calls out the suit of the next card, etc. The task of the psychic is to guess the suit as many times as possible. However, the card backs are in fact asymmetrical, and the psychic can see in which of the two positions the top card lies. The deck is prepared by a bribed employee. The clerk knows the order of the cards in the deck, and although he cannot change it, he can prompt the psychic by having the card backs arranged in a way according to a specific arrangement. Can the psychic, with the help of such a clue, ensure the guessing of the suit of

a) more than half of the cards;

b) no less than 20 cards?

Hannah and Emma have three coins. On different sides of one coin there are scissors and paper, on the sides of another coin – a rock and scissors, on the sides of the third – paper and a rock. Scissors defeat paper, paper defeats rock and rock wins against scissors. First, Hannah chooses a coin, then Emma, then they throw their coins and see who wins (if the same image appears on both, then it’s a draw). They do this many times. Is it possible for Emma to choose a coin so that the probability of her winning is higher than that of Hannah?

Anna is waiting for the bus. Which event is most likely?

\(A =\{\)Anna waits for the bus for at least a minute\(\}\),

\(B = \{\)Anna waits for the bus for at least two minutes\(\}\),

\(C = \{\)Anna waits for the bus for at least five minutes\(\}\).