What is there a greater number of: cats, except for those cats that are not named Fluffy, or animals named Fluffy, except for those that are not cats?
The angle at the top of a crane is \(20^{\circ}\). How will the magnitude of this angle change when looking at the crane with binoculars which triple the size of everything?
We are given 101 rectangles with integer-length sides that do not exceed 100.
Prove that amongst them there will be three rectangles \(A, B, C\), which will fit completely inside one another so that \(A \subset B \subset C\).
Initially, on each cell of a \(1 \times n\) board a checker is placed. The first move allows you to move any checker onto an adjacent cell (one of the two, if the checker is not on the edge), so that a column of two pieces is formed. Then one can move each column in any direction by as many cells as there are checkers in it (within the board); if the column is on a non-empty cell, it is placed on a column standing there and unites with it. Prove that in \(n - 1\) moves you can collect all of the checkers on one square.
So, the mother exclaimed - “It’s a miracle!", and immediately the mum, dad and the children went to the pet store. “But there are more than fifty bullfinches here, how will we decide?,” the younger brother nearly cried when he saw bullfinches. “Don’t worry,” said the eldest, “there are less than fifty of them”. “The main thing,” said the mother, “is that there is at least one!". “Yes, it’s funny,” Dad summed up, “of your three phrases, only one corresponds to reality.” Can you say how many bullfinches there was in the store, knowing that they bought the child a bullfinch?
Elephants, rhinoceroses, giraffes. In all zoos where there are elephants and rhinoceroses, there are no giraffes. In all zoos where there are rhinoceroses and there are no giraffes, there are elephants. Finally, in all zoos where there are elephants and giraffes, there are also rhinoceroses. Could there be a zoo in which there are elephants, but there are no giraffes and no rhinoceroses?
Several natives of an island met up (each either a liar or a knight), and everyone said to everyone else: “You are all liars.” How many knights were there among them?
In a 10-storey house, 1 person lives on the first floor, 2 on the second floor, 3 on the third, 4 on the fourth, ..., 10 on the tenth. On which floor does the elevator stop most often?
The seller with weights. With four weights the seller can weigh any integer number of kilograms, from 1 to 40 inclusive. The total mass of the weights is 40 kg. What are the weights available to the seller?
We are looking for the correct statement. In a notebook one hundred statements are written:
1) There is exactly one false statement in this notebook.
2) There are exactly two false statements in this notebook.
...
100) There are exactly one hundred false statements in this notebook.
Which of these statements is true, if it is known that only one is true?