In a bookcase, there are four volumes of the collected works of Astrid Lindgren, with each volume containing 200 pages. A worm who lives on this bookshelf has gnawed its way from the first page of the first volume to the last page of the fourth volume. Through how many pages has the worm gnawed its way through?
There are some incorrect weighing scales, a bag of cereal and a correct weight of 1 kg. How can you weigh on these scales 1 kg of cereals?
Can the equality \(K \times O \times T = U \times W \times E \times N \times H \times Y\) be true if the numbers from 1 to 9 are substituted for the letters? Different letters correspond to different numbers.
In a room, there are 85 balloons – red and blue ones. It is known that: 1) at least one of the balls is red, 2) from each arbitrarily chosen pair of balls at least one is blue. How many red balls are there in the room?
If the Humpbacked Horse does not eat or sleep for seven days, it will lose its magical powers. Suppose he did not eat or sleep for a week. What should he do first of all by the end of the seventh day – eat or sleep, so as not to lose powers?
Among some number of mathematicians, every seventh is a philosopher, and among some number of philosophers every ninth is a mathematician. Who are there more of: philosophers or mathematicians?
Know-it-all came to visit the twin brothers Screw and Nut, knowing that one of them never speaks the truth, and asked one of them: “Are you Screw?”. “Yes,” he replied. When Know-it-all asked the second brother the same question, he received an equally clear answer and immediately determined who was who.
Who was called Screw?
Uncle Jack, the cat Whiskers, Spot and postman Pat are sitting on a bench. If Spot, sitting to the right of everyone, sits between Uncle Jack and the cat, then the cat will be at the extreme left. In what order do they sit?
When Harvey was asked to come up with a problem for the mathematical Olympiad in Sunny City, he wrote a rebus (see the drawing). Can it be solved? (Different letters must match different numbers).
In two purses lie two coins, and one purse has twice as many coins as the other. How can this be?