For all real \(x\) and \(y\), the equality \(f (x^2 + y) = f (x) + f (y^2)\) holds. Find \(f(-1)\).
The numbers \(\lfloor a\rfloor, \lfloor 2a\rfloor, \dots , \lfloor Na\rfloor\) are all different, and the numbers \(\lfloor 1/a\rfloor, \lfloor 2/a\rfloor,\dots , \lfloor M/a\rfloor\) are also all different. Find all such \(a\).
Find the number of solutions in natural numbers of the equation \(\lfloor x / 10\rfloor = \lfloor x / 11\rfloor + 1\).
Some real numbers \(a_1, a_2, a_3,\dots ,a _{2022}\) are written in a row. Prove that it is possible to pick one or several adjacent numbers, so that their sum is less than 0.001 away from a whole number.
In a row there are 2023 numbers. The first number is 1. It is known that each number, except the first and the last, is equal to the sum of two neighboring ones. Find the last number.
Solve the equation \(\lfloor x^3\rfloor + \lfloor x^2\rfloor + \lfloor x\rfloor = \{x\} - 1\).
On the sides \(AB\), \(BC\) and \(AC\) of the triangle \(ABC\) points \(P\), \(M\) and \(K\) are chosen so that the segments \(AM\), \(BK\) and \(CP\) intersect at one point and \[\vec{AM} + \vec{BK}+\vec{CP} = 0\] Prove that \(P\), \(M\) and \(K\) are the midpoints of the sides of the triangle \(ABC\).
The function \(f\) is such that for any positive \(x\) and \(y\) the equality \(f (xy) = f (x) + f (y)\) holds. Find \(f (2007)\) if \(f (1/2007) = 1\).
Solve the equation \((x + 1)^3 = x^3\).
The numbers \(p\) and \(q\) are such that the parabolas \(y = - 2x^2\) and \(y = x^2 + px + q\) intersect at two points, bounding a certain figure.
Find the equation of the vertical line dividing the area of this figure in half.