Problems

Age
Difficulty
Found: 105

We consider a function \(y = f (x)\) defined on the whole set of real numbers and satisfying \(f (x + k) \times (1 - f (x)) = 1 + f (x)\) for some number \(k \ne 0\). Prove that \(f (x)\) is a periodic function.

In a dark room on a shelf there are 4 pairs of socks of two different sizes and two different colours that are not arranged in pairs. What is the minimum number of socks necessary to move from the drawer to the suitcase, without leaving the room, so that there are two pairs of socks of different sizes and colours in the suitcase?

Prove that for every natural number \(n > 1\) the equality: \[\lfloor n^{1 / 2}\rfloor + \lfloor n^{1/ 3}\rfloor + \dots + \lfloor n^{1 / n}\rfloor = \lfloor \log_{2}n\rfloor + \lfloor \log_{3}n\rfloor + \dots + \lfloor \log_{n}n\rfloor\] is satisfied.

The function \(f(x)\) on the interval \([a, b]\) is equal to the maximum of several functions of the form \(y = C \times 10^{- | x-d |}\) (where \(d\) and \(C\) are different, and all \(C\) are positive). It is given that \(f (a) = f (b)\). Prove that the sum of the lengths of the sections on which the function increases is equal to the sum of the lengths of the sections on which the function decreases.

Let \(n\) numbers are given together with their product \(p\). The difference between \(p\) and each of these numbers is an odd number.

Prove that all \(n\) numbers are irrational.

The board has the form of a cross, which is obtained if corner boxes of a square board of \(4 \times 4\) are erased. Is it possible to go around it with the help of the knight chess piece and return to the original cell, having visited all the cells exactly once?