Problems

Age
Difficulty
Found: 117

Some real numbers \(a_1, a_2, a_3,\dots ,a _{2022}\) are written in a row. Prove that it is possible to pick one or several adjacent numbers, so that their sum is less than 0.001 away from a whole number.

Does there exist a real number \({\alpha}\) such that the number \(\cos {\alpha}\) is irrational, and all the numbers \(\cos 2{\alpha}\), \(\cos 3{\alpha}\), \(\cos 4{\alpha}\), \(\cos 5{\alpha}\) are rational?

We have a very large chessboard, consisting of white and black squares. We would like to place a stain of a specific shape on this chessboard and we know that the area of this stain is less than the area of one square of the chessboard. Show that it is always possible to place the stain in such a way that it does not cover a vertex of any square.