Ten circles are marked on the circle. How many non-closed non-self-intersecting nine-point broken lines exist with vertices at these points?
How many nine-digit numbers exist, the sum of the digits of which is even?
Calculate the following sums:
a) \(\binom{5}{0} + 2\binom{5}{1} + 2^2\binom{5}{2} + \dots +2^5\binom{5}{5}\);
b) \(\binom{n}{0} - \binom{n}{1} + \dots + (-1)^n\binom{n}{n}\);
c) \(\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n}\).
In the expansion of \((x + y)^n\), using the Newton binomial formula, the second term was 240, the third – 720, and the fourth – 1080. Find \(x\), \(y\) and \(n\).
Here is a fragment of the table, which is called the Leibniz triangle. Its properties are “analogous in the sense of the opposite” to the properties of Pascal’s triangle. The numbers on the boundary of the triangle are the inverses of consecutive natural numbers. Each number is equal to the sum of two numbers below it. Find the formula that connects the numbers from Pascal’s and Leibniz triangles.
Prove that for a real positive \(\alpha\) and a positive integer \(d\), \(\lfloor \alpha / d\rfloor = \lfloor \lfloor \alpha\rfloor / d\rfloor\) is always satisfied.
Draw all of the stairs made from four bricks in descending order, starting with the steepest \((4, 0, 0, 0)\) and ending with the shallowest \((1, 1, 1, 1)\).
A frog jumps over the vertices of the triangle \(ABC\), moving each time to one of the neighbouring vertices.
How many ways can it get from \(A\) to \(A\) in \(n\) jumps?
Author: A. Khrabrov
Do there exist integers \(a\) and \(b\) such that
a) the equation \(x^2 + ax + b = 0\) does not have roots, and the equation \(\lfloor x^2\rfloor + ax + b = 0\) does have roots?
b) the equation \(x^2 + 2ax + b = 0\) does not have roots, and the equation \(\lfloor x^2\rfloor + 2ax + b = 0\) does have roots?
Note that here, square brackets represent integers and curly brackets represent non-integer values or 0.
The segment \(OA\) is given. From the end of the segment \(A\) there are 5 segments \(AB_1, AB_2, AB_3, AB_4, AB_5\). From each point \(B_i\) there can be five more new segments or not a single new segment, etc. Can the number of free ends of the constructed segments be 1001? By the free end of a segment we mean a point belonging to only one segment (except point \(O\)).