In the TV series “The Secret of Santa Barbara” there are 20 characters. Each episode contains one of the events: some character discovers the Mystery, some character discovers that someone knows the Mystery, some character discovers that someone does not know the Mystery. What is the maximum number of episodes that this tv series can last?
A raisin bag contains 2001 raisins with a total weight of 1001 g, and no raisin weighs more than 1.002 g.
Prove that all the raisins can be divided onto two scales so that they show a difference in weight not exceeding 1 g.
Find the first 99 decimal places in the number expansion of \((\sqrt{26} + 5)^{99}\).
In a communication system consisting of 2001 subscribers, each subscriber is connected with exactly \(n\) others. Determine all the possible values of \(n\).
A raisin bag contains 2001 raisins with a total weight of 1001 g, and no raisin weighs more than 1.002 g.
Prove that all the raisins can be divided onto two scales so that they show a difference in weight not exceeding 1 g.
There are 20 students in a class, and each one is friends with at least 14 others. Can you prove that there are four students in this class who are all friends?
A passenger left his things in an automatic storage room, and when he came to get his things, it turned out that he had forgotten the code. He only remembers that in the code there were the numbers 23 and 37. To open the room, you need to correctly type a five-digit number. What is the least number of codes you need to sort through in order to open the room for sure?
Think of a way to finish constructing Pascal’s triangle upward.
Consider a chess board of size \(n \times n\). It is required to move a rook from the bottom left corner to the upper right corner. You can move only up and to the right, without going into the cells of the main diagonal and the one below it. (The rook is on the main diagonal only initially and in the final moment in time.) How many possible routes does the rook have?
Let \((1 + \sqrt {2} + \sqrt {3})^n = p_n + q_n \sqrt {2} + r_n \sqrt {3} + s_n \sqrt {6}\) for \(n \geq 0\). Find:
a) \(\lim \limits_ {n \to \infty} {\frac {p_n} {q_n}}\); b) \(\lim \limits_ {n \to \infty} {\frac {p_n} {r_n}}\); c) \(\lim \limits_ {n \to \infty} {\frac {p_n} {s_n}}\);