When Gulliver came to Lilliput, he found that everything was exactly 12 times shorter than in his homeland. Can you say how many Lilliputian matchboxes fit into the matchbox of Gulliver?
A page of a calendar is partially covered by the previous torn sheet (see the figure). The vertices A and B of the upper sheet lie on the sides of the bottom sheet. The fourth vertex of the lower leaf is not visible – it is covered by the top sheet. The upper and lower pages, of course, are identical in size to each other. Which part of the lower page is greater, that which is covered or that which is not?
A square piece of paper is cut into 6 pieces, each of which is a convex polygon. 5 of the pieces are lost, leaving only one piece in the form of a regular octagon (see the drawing). Is it possible to reconstruct the original square using just this information?
A cube with a side of 1 m was sawn into cubes with a side of 1 cm and they were in a row (along a straight line). How long was the line?
In a regular shape with 25 vertices, all the diagonals are drawn.
Prove that there are no nine diagonals passing through one interior point of the shape.
A square is cut by 18 straight lines, 9 of which are parallel to one side of the square and the other 9 parallel to the other – perpendicular to the first 9 – dividing the square into 100 rectangles. It turns out that exactly 9 of these rectangles are squares. Prove that among these 9 squares there will be two that are identical.
The population of China is one billion people. It would seem that on a map of China with a scale of 1 : 1,000,000 (1 cm : 10 km), it would be possible to fit a million times fewer people than there is in the whole country. However, in fact, not only 1000, but even 100 people will not be able to be placed on this map. Can you explain this contradiction?
Propose a method for measuring the diagonal of a conventional brick, which is easily realied in practice (without the Pythagorean theorem).
When Gulliver came to Lilliput, he found that there all things were exactly 12 times shorter than in his homeland. Can you say how many Lilliputian matchboxes fit into one of Gulliver’s matchboxes?
Which rectangles with whole sides are there more of: with perimeter of 1996 or with perimeter of 1998? (The rectangles \(a \times b\) and \(b \times a\) are assumed to be the same).