Arrows are placed on the sides of a polygon. Prove that the number of vertices in which two arrows converge is equal to the number of vertices from which two arrows emerge.
An area of airspace contains clouds. It turns out that the area can be divided by 10 aeroplanes into regions such that each region contains no more than one cloud. What is the largest number of clouds an aircraft can fly through whilst holding a straight line course.
2001 vertices of a regular 5000-gon are painted. Prove that there are three coloured vertices lying on the vertices of an isosceles triangle.
All the points on the edge of a circle are coloured in two different colours at random. Prove that there will be an equilateral triangle with vertices of the same colour inside the circle – the vertices are points on the circumference of the circle.
Prove that there is no polyhedron that has exactly seven edges.
Prove that no straight line can cross all three sides of a triangle, at points away from the vertices.
A circle is divided up by the points \(A, B, C, D\) so that \({\smile}{AB}:{\smile}{BC}:{\smile}{CD}:{\smile}{DA} = 2: 3: 5: 6\). The chords \(AC\) and \(BD\) intersect at point \(M\). Find the angle \(AMB\).
A circle is divided up by the points \(A\), \(B\), \(C\), \(D\) so that \({\smile}{AB}:{\smile}{BC}:{\smile}{CD}:{\smile}{DA} = 3: 2: 13: 7\). The chords \(AD\) and \(BC\) are continued until their intersection at point \(M\). Find the angle \(AMB\).
The angles of a triangle are in the ratio \(2: 3: 4\). Find the ratio of the outer angles of the triangle.
One angle of a triangle is equal to the sum of its other two angles. Prove that the triangle is right-angled.