On every cell of a \(9 \times 9\) board there is a beetle. At the sound of a whistle, every beetle crawls onto one of the diagonally neighbouring cells. Note that, in some cells, there may be more than one beetle, and some cells will be unoccupied.
Prove that there will be at least 9 unoccupied cells.
Prove that if \(a, b, c\) are odd numbers, then at least one of the numbers \(ab-1\), \(bc-1\), \(ca-1\) is divisible by 4.
10 natural numbers are written on a blackboard. Prove that it is always possible to choose some of these numbers and write “\(+\)” or “\(-\)” between them so that the resulting algebraic sum is divisible by 1001.
Is it possible to fill an \(n\times n\) table with the numbers \(-1\), \(0\), \(1\), such that the sums of all the rows, columns, and diagonals are unique?
Upon the installation of a keypad lock, each of the 26 letters located on the lock’s keypad is assigned an arbitrary natural number known only to the owner of the lock. Different letters do not necessarily have different numbers assigned to them. After a combination of different letters, where each letter is typed once at most, is entered into the lock a summation is carried out of the corresponding numbers to the letters typed in. The lock opens only if the result of the summation is divisible by 26. Prove that for any set of numbers assigned to the 26 letters, there exists a combination that will open the lock.
Reception pupil Peter knows only the number 1. Prove that he can write a number divisible by 2001.
A hostess bakes a cake for some guests. Either 10 or 11 people can come to her house. What is the smallest number of pieces she needs to cut the cake into (in advance) so that it can be divided equally between 10 and 11 guests?
What weights can three weights have so that they can weigh any integer number of kilograms from 1 to 10 on weighing scales (weights can be put on both cups)? Give an example.
A convex polygon on a plane contains no fewer than \(m^2+1\) points with whole number co-ordinates. Prove that within the polygon there are \(m+1\) points with whole number co-ordinates that lie on a single straight line.
Sam and Lena have several chocolates, each weighing not more than 100 grams. No matter how they share these chocolates, one of them will have a total weight of chocolate that does not exceed 100 grams. What is the maximum total weight of all of the chocolates?