Upon the installation of a keypad lock, each of the 26 letters located on the lock’s keypad is assigned an arbitrary natural number known only to the owner of the lock. Different letters do not necessarily have different numbers assigned to them. After a combination of different letters, where each letter is typed once at most, is entered into the lock a summation is carried out of the corresponding numbers to the letters typed in. The lock opens only if the result of the summation is divisible by 26. Prove that for any set of numbers assigned to the 26 letters, there exists a combination that will open the lock.
Reception pupil Peter knows only the number 1. Prove that he can write a number divisible by 2001.
A hostess bakes a cake for some guests. Either 10 or 11 people can come to her house. What is the smallest number of pieces she needs to cut the cake into (in advance) so that it can be divided equally between 10 and 11 guests?
What weights can three weights have so that they can weigh any integer number of kilograms from 1 to 10 on weighing scales (weights can be put on both cups)? Give an example.
A convex polygon on a plane contains no fewer than \(m^2+1\) points with whole number co-ordinates. Prove that within the polygon there are \(m+1\) points with whole number co-ordinates that lie on a single straight line.
Sam and Lena have several chocolates, each weighing not more than 100 grams. No matter how they share these chocolates, one of them will have a total weight of chocolate that does not exceed 100 grams. What is the maximum total weight of all of the chocolates?
A straight corridor of length 100 m is covered with 20 rugs that have a total length of 1 km. The width of each rug is equal to the width of the corridor. What is the longest possible total length of corridor that is not covered by a rug?
a) There are 21 coins on a table with the tails side facing upwards. In one operation, you are allowed to turn over any 20 coins. Is it possible to achieve the arrangement were all coins are facing with the heads side upwards in a few operations?
b) The same question, if there are 20 coins, but you are allowed to turn over 19.
Theorem: All people have the same eye color.
"Proof" by induction: This is clearly true for one person.
Now, assume we have a finite set of people, denote them as \(a_1,\, a_2,\, ...,\,a_n\), and the inductive hypothesis is true for all smaller sets. Then if we leave aside the person \(a_1\), everyone else \(a_2,\, a_3,\,...,\,a_n\) has the same color of eyes and if we leave aside \(a_n\), then all \(a_1,\, a_2,\,a_3,...,\,a_{n-1}\) also have the same color of eyes. Thus any \(n\) people have the same color of eyes.
Find a mistake in this "proof".
The pigeonhole principle is often called “Dirichlet’s box principle". Dirichlet made good use of this tool to show a fundamental result in Diophantine approximation, now commonly known as the Dirichlet Approximation Theorem. You will now prove it yourself!
Suppose \(\alpha\) is any irrational real number and \(N\geq 1\) is any positive integer. Show that there is an integer \(1\leq q\leq N\) and an integer \(p\) such that \[\left| q \alpha - p \right| < \frac{1}{N}.\]