Problems

Age
Difficulty
Found: 584

Fred and George together with their mother were decorating the Christmas tree. So that they would not fight, their mother gave each brother the same number of decorations and branches. Fred tried to hang one decoration on each branch, but he needed one more branch for his last decoration. George tried to hang two toys on each branch, but one branch was empty. What do you think, how many branches and how many decorations did the mother give to her sons?

One three-digit number consists of different digits that are in ascending order, and in its name all words begin with the same letter. The other three-digit number, on the contrary, consists of identical digits, but in its name all words begin with different letters. What are these numbers?

Four friends came to an ice-rink, each with her brother. They broke up into pairs and started skating. It turned out that in each pair the “gentleman” was taller than the “lady” and no one is skating with his sister. The tallest boy in the group was Sam Smith, Peter Potter, then Luisa Potter, Joe Simpson, Laura Simpson, Dan Caldwell, Jane Caldwell and Hannah Smith. Determine who skated with whom.

a) Prove that within any 6 whole numbers there will be two that have a difference between them that is a multiple of 5.

b) Will this statement remain true if instead of the difference we considered the total?

Is it possible to arrange 44 marbles into 9 piles, so that the number of marbles in each pile is different?

In a room, there are 85 red and blue balloons. It is known that: 1) at least one of the balloons is red; 2) from each arbitrarily chosen pair of balloons at least one blue. How many red balloons are there in the room?

Is it possible to fill a \(5 \times 5\) table with numbers so that the sum of the numbers in each row is positive and the sum of the numbers in each column is negative?

Is it always the case that in any 25 GBP banknotes – that is £5, £10, £20, and £50 notes – there will always be 7 banknotes of the same denomination?