Problems

Age
Difficulty
Found: 46

With a red marker, Margaret marked three points with integer coordinates on a number line. With a blue marker, Angelina marked a midpoint for every pair of red points. Prove that at least 1 of the blue points has an integer coordinate.

Alice took a red marker and marked 5 points with integer coordinates on a coordinate plane. Miriam took a blue marker and marked a midpoint for each pair of red points. Prove that at least 1 of the blue points has integer coordinates.

A ream of squared paper is shaded in two colours. Prove that there are two horizontal and two vertical lines, the points of intersection of which are shaded in the same colour.

There are 25 points on a plane, and among any three of them there can be found two points with a distance between them of less than 1. Prove that there is a circle of radius 1 containing at least 13 of these points.

What is the minimum number of points necessary to mark inside a convex \(n\)-sided polygon, so that at least one marked point always lies inside any triangle whose vertices are shared with those of the polygon?

A castle is surrounded by a circular wall with nine towers, at which there are knights on duty. At the end of each hour, they all move to the neighbouring towers, each knight moving either clockwise or counter-clockwise. During the night, each knight stands for some time at each tower. It is known that there was an hour when at least two knights were on duty at each tower, and there was an hour when there was precisely one knight on duty on each of exactly five towers. Prove that there was an hour when there were no knights on duty on one of the towers.

What is the minimum number of \(1\times 1\) squares that need to be drawn in order to get an image of a \(25\times 25\) square divided into 625 smaller 1x1 squares?

2022 points are selected from a cube, whose edge is equal to 13 units. Is it possible to place a cube with edge of 1 unit in this cube so that there is not one selected point inside it?

In draughts, the king attacks by jumping over another draughts-piece. What is the maximum number of draughts kings we can place on the black squares of a standard \(8\times 8\) draughts board, so that each king is attacking at least one other?