A unit square contains 51 points. Prove that it is always possible to cover three of them with a circle of radius \(\frac{1}{7}\).
There are several squares on a rectangular sheet of chequered paper of size \(m \times n\) cells, the sides of which run along the vertical and horizontal lines of the paper. It is known that no two squares coincide and no square contains another square within itself. What is the largest number of such squares?
The surface of a \(3\times 3\times 3\) Rubik’s Cube contains \(54\) squares. What is the maximum number of squares we can mark so that no marked squares share at least one vertex?
Make sure you show that both (a) you can achieve this maximum and (b) that you can’t do better than this maximum.
The centres of all unit squares are marked in a \(10 \times 10\) chequered box (100 points in total). What is the smallest number of lines, that are not parallel to the sides of the square, that are needed to be drawn to erase all of the marked points?
We are given a convex 200-sided polygon in which no three diagonals intersect at the same point. Each of the diagonals is coloured in one of 999 colours. Prove that there is some triangle inside the polygon whose sides lie some of the diagonals, so that all 3 sides are the same colour. The vertices of the triangle do not necessarily have to be the vertices of the polygon.
On an 8×8 grid (like a chessboard), an L-corner is a shape made of 3 little squares of the board that touch to make an L. You can turn the L any way you like. We place the L-corners so that none overlap. What is the fewest L-corners you must place so that no more L-corners can be added anywhere? Here is an example of how three L-corners may look like: