Problems

Age
Difficulty
Found: 331

We consider a sequence of words consisting of the letters “A” and “B”. The first word in the sequence is “A”, the \(k\)-th word is obtained from the \((k-1)\)-th by the following operation: each “A” is replaced by “AAB” and each “B” by “A”. It is easy to see that each word is the beginning of the next, thus obtaining an infinite sequence of letters: AABAABAAABAABAAAB...

a) Where in this sequence will the 1000th letter “A” be?

b) Prove that this sequence is non-periodic.

The function \(f(x)\) on the interval \([a, b]\) is equal to the maximum of several functions of the form \(y = C \times 10^{- | x-d |}\) (where \(d\) and \(C\) are different, and all \(C\) are positive). It is given that \(f (a) = f (b)\). Prove that the sum of the lengths of the sections on which the function increases is equal to the sum of the lengths of the sections on which the function decreases.

Let \(n\) numbers are given together with their product \(p\). The difference between \(p\) and each of these numbers is an odd number.

Prove that all \(n\) numbers are irrational.

Louise is confident that all her classmates have different number of friends. Is she right?

There are 100 cities all connected by roads. Each city has 6 roads coming in (or going out). How many roads do connect those cities?

There are 15 cities in a country named The Country of Fifteen Cities. The king ordered his main architect to build roads in such a way that each city was connected with other cities by exactly 5 roads, otherwise he would hang the architect. Do you think that the architect can accomplish the task or should he flee that country immediately?

The architect decided to flee The Country of 15 Cities and began to travel around the world. He arrived to a country, where every city had exactly 3 roads going to and from it. Can there be all together 100 roads in that country?

There are 9 cities named City 1, City 2, City 3, …, and City 9 in a country named The Country of the Nine Cities. Two cities are connected by a road only if the sum of the numbers made up by their names is divisible by 3. Can our travelling architect reach City 9 by starting his journey from City 1 and travelling along those roads?

Show that among any 6 people there are always either 3 people who all know each other or 3 total strangers.