Are there functions \(p (x)\) and \(q (x)\) such that \(p (x)\) is an even function and \(p (q (x))\) is an odd function (different from identically zero)?
The function \(f (x)\) is defined for all real numbers, and for any \(x\) the equalities \(f (x + 2) = f (2 - x)\) and \(f (x + 7) = f (7 - x)\) are satisfied. Prove that \(f (x)\) is a periodic function.
A sequence consists of 19 ones and 49 zeros, arranged in a random order. We call the maximal subsequence of the same symbols a “group”. For example, in the sequence 110001001111 there are five groups: two ones, then three zeros, then one one, then two zeros and finally four ones. Find the mathematical expectation of the length of the first group.
For all real \(x\) and \(y\), the equality \(f (x^2 + y) = f (x) + f (y^2)\) holds. Find \(f(-1)\).
How can you arrange the numbers \(5/177\), \(51/19\) and \(95/9\) and the arithmetical operators “\(+\)”, “\(-\)”, “\(\times\)” and “\(\div\)” such that the result is equal to 2006? Note: you can use the given numbers and operators more than once.
The expression \(ax^2+bx+c\) is an exact fourth power for all integers \(x\). Prove that \(a=b=0\).
Does there exist a real number \({\alpha}\) such that the number \(\cos {\alpha}\) is irrational, and all the numbers \(\cos 2{\alpha}\), \(\cos 3{\alpha}\), \(\cos 4{\alpha}\), \(\cos 5{\alpha}\) are rational?
Prove that \(\frac {1}{2} (x^2 + y^2) \geq xy\) for any \(x\) and \(y\).
Prove that for \(a, b, c > 0\), the following inequality is valid: \(\left(\frac{a+b+c}{3}\right)^2 \ge \frac{ab+bc+ca}{3}\).
Prove that for \(x \geq 0\) the inequality is valid: \(2x + \frac {3}{8} \ge \sqrt[4]{x}\).