Problems

Age
Difficulty
Found: 104
  • Find a representation of the number \(117 = 121-4\) as a product.

  • Let \(a\) and \(b\) be real numbers. Find a representation of \(a^2 - b^2\) as a product.

Find all solutions of the equation: \(x^2 + y^2 + z^2 + t^2 = x(y + z + t)\).

Solve the system of equations in real numbers: \[\left\{ \begin{aligned} x+y = 2\\ xy-z^2 = 1 \end{aligned} \right.\]

Find all solutions of the equation: \(xy + 1 = x + y\).

Find all solutions of the system of equations: \[\left\{ \begin{aligned} x+y+z = a\\ x^2 + y^2+z^2 = a^2\\ x^3+y^3+z^3 = a^3 \end{aligned} \right.\]

Find all solutions of the system of equations: \[\left\{ \begin{aligned} (x+y)^3=z\\ (x+z)^3=y\\ (y+z)^3=x \end{aligned} \right.\]

Find a representation as a product of \(a^{2n+1} + b^{2n+1}\) for general \(a,b,n\).

Find a representation as a product of \(a^n - b^n\) for general \(a,b,n\).

Let \(a,b,c,d\) be positive real numbers. Prove that \((a+b)\times(c+d) = ac+ad+bc+bd\). Find both algebraic solution and geometric interpretation.

Let \(a,b,c,d\) be positive real numbers such that \(a\geq b\) and \(c\geq d\). Prove that \((a-b)\times(c-d) = ac-ad-bc+bd\). Find both algebraic solution and geometric interpretation.