Let \(z = x + iy\), \(w = u + iv\). Find a) \(z + w\); b) \(zw\); c) \(z/w\).
Prove the equalities:
a) \(\overline{z+w} = \overline{z} + \overline{w}\); b) \(\overline{zw} = \overline{z} \overline{w}\); c) \(\overline{\frac{z}{w}} = \frac{\overline{z}}{\overline{w}}\); d) \(|\overline{z}| = |z|\); d) \(\overline{\overline{z}} = z\).
Prove the equalities:
a) \(z + \overline {z} = 2 \operatorname{Re} z\);
b) \(z - \overline {z} = 2i \operatorname{Im} z\);
c) \(\overline {z} z = |z|^2\).
Prove the formulae: \(\arcsin (- x) = - \arcsin x\), \(\arccos (- x) = \pi - \arccos x\).
The sequence of numbers \(a_n\) is given by the conditions \(a_1 = 1\), \(a_{n + 1} = a_n + 1/a^2_n\) (\(n \geq 1\)).
Is it true that this sequence is limited?
Prove that \(\sqrt{\frac{a^2 + b^2}{2}} \geq \frac{a+b}{2}\).
Prove that the equation \(\frac {x}{y} + \frac {y}{z} + \frac {z}{x} = 1\) is unsolvable using positive integers.
Let the sequences of numbers \(\{a_n\}\) and \(\{b_n\}\), that are associated with the relation \(\Delta b_n = a_n\) (\(n = 1, 2, \dots\)), be given. How are the partial sums \(S_n\) of the sequence \(\{a_n\}\) \(S_n = a_1 + a_2 + \dots + a_n\) linked to the sequence \(\{b_n\}\)?
Definition. The sequence of numbers \(a_0, a_1, \dots , a_n, \dots\), which, with the given \(p\) and \(q\), satisfies the relation \(a_{n + 2} = pa_{n + 1} + qa_n\) (\(n = 0,1,2, \dots\)) is called a linear recurrent sequence of the second order.
The equation \[x^2-px-q = 0\] is called a characteristic equation of the sequence \(\{a_n\}\).
Prove that, if the numbers \(a_0\), \(a_1\) are fixed, then all of the other terms of the sequence \(\{a_n\}\) are uniquely determined.
The frog jumps over the vertices of the hexagon \(ABCDEF\), each time moving to one of the neighbouring vertices.
a) How many ways can it get from \(A\) to \(C\) in \(n\) jumps?
b) The same question, but on condition that it cannot jump to \(D\)?
c) Let the frog’s path begin at the vertex \(A\), and at the vertex \(D\) there is a mine. Every second it makes another jump. What is the probability that it will still be alive in \(n\) seconds?
d)* What is the average life expectancy of such frogs?