Problems

Age
Difficulty
Found: 705

Gabby and Joe cut rectangles out of checkered paper. Joe is lazy; He throws a die once and cuts out a square whose side is equal to the number of points that are on the upwards facing side of the die. Gabby throws the die twice and cuts out a rectangle with the length and width equal to the numbers which come out from the die. Who has the mathematical expectation of the rectangle of a greater area?

An exam is made up of three trigonometry problems, two algebra problems and five geometry problems. Martin is able to solves trigonometry problems with probability \(p_1 = 0.2\), geometry problems with probability \(p_2 = 0.4\), and algebra problems with probability \(p_3 = 0.5\). To get a \(B\), Martin needs to solve at least five problems, where the grades are as follows \((A+, A, B, C, D)\).

a) With what probability does Martin solve at least five problems?

Martin decided to work hard on the problems of any one section. Over a week, he can increase the probability of solving the problems of this section by 0.2.

b) What section should Martin complete, so that the probability of solving at least five problems becomes the greatest?

c) Which section should Martin deal with, so that the mathematical expectation of the number of solved problems becomes the greatest?

According to the rules of a chess match, the winner is declared to be the one who has beaten their opponent by two defeats. Draws do not count. The probability of winning for both rivals is the same. The number of successful games played in such a match is random. Find its mathematical expectation.

\(N\) people lined up behind each other. The taller people obstruct the shorter ones, and they cannot be seen.

What is the mathematical expectation of the number of people that can be seen?

In the centre of a rectangular billiard table that is 3 m long and 1 m wide, there is a billiard ball. It is hit by a cue in a random direction. After the impact the ball stops passing exactly 2 m. Find the expected number of reflections from the sides of the table.

A die is thrown six times. Find the mathematical expectation of the number of different faces the die lands on.

On a calculator keypad, there are the numbers from 0 to 9 and signs of two actions (see the figure). First, the display shows the number 0. You can press any keys. The calculator performs the actions in the sequence of clicks. If the action sign is pressed several times, the calculator will only remember the last click.

a) The button with the multiplier sign breaks and does not work. The Scattered Scientist pressed several buttons in a random sequence. Which result of the resulting sequence of actions is more likely: an even number or an odd number?

b) Solve the previous problem if the multiplication symbol button is repaired.

On a Christmas tree, 100 light bulbs hang in a row. Then the light bulbs begin to switch according to the following algorithm: all are lit up, then after a second, every second light goes out, after another second, every third light bulb changes: if it was on, it goes out and vice versa. After another second, every fourth bulb switches, a second later – every fifth and so on. After 100 seconds the sequence ends. Find the probability that a light bulb straight after a randomly selected light bulb is on (bulbs do not burn out and do not break).

A sailor can only serve on a submarine if their height does not exceed 168 cm. There are four teams \(A\), \(B\), \(C\) and \(D\). All sailors in these teams want to serve on a submarine and have been rigorously selected. There remains the last selection round – for height.

In team \(A\), the average height of sailors is 166 cm.

In team \(B\), the median height of the sailors is 167 cm.

In team \(C\), the tallest sailor has a height of 169 cm.

In team \(D\), the mode of the height of the sailors is 167 cm.

In which team, can at least half of the sailors definitely serve on the submarine?