What is the smallest number of cells that can be chosen on a \(15\times15\) board so that a mouse positioned on any cell on the board touches at least two marked cells? (The mouse also touches the cell on which it stands.)
The pupils of class 5A had a total of 2015 pencils. One of them lost a box with five pencils, and instead bought a box with 50 pencils. How many pencils do the pupils of class 5A now have?
What is the largest number of horses that can be placed on an \(8\times8\) chessboard so that no horse touches more than seven of the others?
Harry thought of two positive numbers \(x\) and \(y\). He wrote down the numbers \(x + y\), \(x - y\), \(xy\) and \(x/y\) on a board and showed them to Sam, but did not say which number corresponded to which operation.
Prove that Sam can uniquely figure out \(x\) and \(y\).
It is known that \(a > 1\). Is it always true that \(\lfloor \sqrt{\lfloor \sqrt{a}\rfloor }\rfloor = \lfloor \sqrt{4}{a}\rfloor\)?
An abstract artist took a wooden \(5\times 5\times 5\) cube and divided each face into unit squares. He painted each square in one of three colours – black, white, and red – so that there were no horizontally or vertically adjacent squares of the same colour. What is the smallest possible number of squares the artist could have painted black following this rule? Unit squares which share a side are considered adjacent both when the squares lie on the same face and when they lie on adjacent faces.
At the power plant, rectangles that are 2 m long and 1 m wide are produced. The length of the objects is measured by the worker Howard, and the width, irrespective of Howard, is measured by the worker Rachel. The average error is zero for both, but Howard allows a standard measurement error (standard deviation of length) of 3 mm, and Rachel allows a standard error of 2 mm.
a) Find the mathematical expectation of the area of the resulting rectangle.
b) Find the standard deviation of the area of the resulting rectangle in centimetres squared.
At a factory known to us, we cut out metal disks with a diameter of 1 m. It is known that a disk with a diameter of exactly 1 m weighs exactly 100 kg. During manufacturing, a measurement error occurs, and therefore the standard deviation of the radius is 10 mm. Engineer Gavin believes that a stack of 100 disks on average will weigh 10,000 kg. By how much is the engineer Gavin wrong?
At a conference there were 18 scientists, of which exactly 10 know the eye-popping news. During the break (coffee break), all scientists are broken up into random pairs, and in each pair, anyone who knows the news, tells this news to another if he did not already know it.
a) Find the probability that after the coffee break, the number of scientists who know the news will be 13.
b) Find the probability that after the coffee break the number of scientists who know the news will be 14.
c) Denote by the letter \(X\) the number of scientists who know the eye-popping news after the coffee break. Find the mathematical expectation of \(X\).
A high rectangle of width 2 is open from above, and the L-shaped domino falls inside it in a random way (see the figure).
a) \(k\) \(L\)-shaped dominoes have fallen. Find the mathematical expectation of the height of the resulting polygon.
b) \(7\) \(G\)-shaped dominoes fell inside the rectangle. Find the probability that the resulting figure will have a height of 12.