Problems

Age
Difficulty
Found: 221

a) A 1 or a 0 is placed on each vertex of a cube. The sum of the 4 adjacent vertices is written on each face of the cube. Is it possible for each of the numbers written on the faces to be different?

b) The same question, but if 1 and \(-1\) are used instead.

At the end of the term, Billy wrote out his current singing marks in a row and put a multiplication sign between some of them. The product of the resulting numbers turned out to be equal to 2007. What is Billy’s term mark for singing? (The marks that he can get are between 2 and 5, where 5 is the highest mark).

Is it possible to arrange the numbers 1, 2, ..., 60 in a circle in such an order that the sum of every two numbers, between which lies one number, is divisible by 2, the sum of every two numbers between which lie two numbers, is divisible by 3, the sum of every two numbers between which lie six numbers, is divisible by 7?

Four people discussed the answer to a task.

Harry said: “This is the number 9”.

Ben: “This is a prime number.”

Katie: “This is an even number.”

And Natasha said that this number is divisible by 15.

One boy and one girl answered correctly, and the other two made a mistake. What is the actual answer to the question?