Compare the numbers: \(A=2011\times 20122012\times 201320132013\) and \(B= 2013\times 20112011 \times 201220122012\).
Suppose you have 127 1p coins. How can you distribute them among 7 coin pouches such that you can give out any amount from 1p to 127p without opening the coin pouches?
Prove that: \[a_1 a_2 a_3 \cdots a_{n-1}a_n \times 10^3 \equiv a_{n-1} a_n \times 10^3 \pmod4,\] where \(n\) is a natural number and \(a_i\) for \(i=1,2,\ldots, n\) are the digits of some number.
In a room there are some chairs with 4 legs and some stools with 3 legs. When each chair and stool has one person sitting on it, then in the room there are a total of 39 legs. How many chairs and stools are there in the room?
Jane wrote a number on the whiteboard. Then, she looked at it and she noticed it lacks her favourite digit: 5. So she wrote 5 at the end of it. She then realized the new number is larger than the original one by exactly 1661. What is the number written on the board?
Replace letters with digits to maximize the expression: \[NO + MORE + MATH\] (same letters stand for identical digits and different letters stand for different digits.)
The digits of a 3 digit number \(A\) were written in reverse order and this is the number \(B\). Is it possible to find a value of \(A\) such that the sum of \(A\) and \(B\) has only odd numbers as its digits?
Let \(x\) be a 2 digit number. Let \(A\), \(B\) be the first (tens) and second (units) digits of \(x\), respectively. Suppose \(A\) is twice as large as \(B\). If we add the square of \(A\) to \(x\) then we get the square of a certain whole number. Find the value of \(x\).
From the set of numbers 1 to \(2n\), \(n + 1\) numbers are chosen. Prove that among the chosen numbers there are two, one of which is divisible by another.
How many distinct seven-digit numbers exist? It is assumed that the first digit cannot be zero.