Initially, on each cell of a \(1 \times n\) board a checker is placed. The first move allows you to move any checker onto an adjacent cell (one of the two, if the checker is not on the edge), so that a column of two pieces is formed. Then one can move each column in any direction by as many cells as there are checkers in it (within the board); if the column is on a non-empty cell, it is placed on a column standing there and unites with it. Prove that in \(n - 1\) moves you can collect all of the checkers on one square.
So, the mother exclaimed - “It’s a miracle!", and immediately the mum, dad and the children went to the pet store. “But there are more than fifty bullfinches here, how will we decide?,” the younger brother nearly cried when he saw bullfinches. “Don’t worry,” said the eldest, “there are less than fifty of them”. “The main thing,” said the mother, “is that there is at least one!". “Yes, it’s funny,” Dad summed up, “of your three phrases, only one corresponds to reality.” Can you say how many bullfinches there was in the store, knowing that they bought the child a bullfinch?
In a 10-storey house, 1 person lives on the first floor, 2 on the second floor, 3 on the third, 4 on the fourth, ..., 10 on the tenth. On which floor does the elevator stop most often?
The cells of a \(15 \times 15\) square table are painted red, blue and green. Prove that there are two lines which at least have the same number of cells of one colour.
In a bookcase, there are four volumes of the collected works of Astrid Lindgren, with each volume containing 200 pages. A worm who lives on this bookshelf has gnawed its way from the first page of the first volume to the last page of the fourth volume. Through how many pages has the worm gnawed its way through?
Can the equality \(K \times O \times T = U \times W \times E \times N \times H \times Y\) be true if the numbers from 1 to 9 are substituted for the letters? Different letters correspond to different numbers.
In two purses lie two coins, and one purse has twice as many coins as the other. How can this be?
Cut the board shown in the figure into four congruent parts so that each of them contains three shaded cells. Where the shaded cells are placed in each part need not be the same.
Gerard says: the day before yesterday I was 10 years old, and next year I will turn 13. Can this be?
We call a natural number “amazing” if it has the form \(a^b + b^a\) (where \(a\) and \(b\) are natural numbers). For example, the number 57 is amazing, since \(57 = 2^5 + 5^2\). Is the number 2006 amazing?