Problems

Age
Difficulty
Found: 395

A sequence of natural numbers \(a_1 < a_2 < a_3 < \dots < a_n < \dots\) is such that each natural number is either a term in the sequence, can be expressed as the sum of two terms in the sequence, or perhaps the same term twice. Prove that \(a_n \leq n^2\) for any \(n=1, 2, 3,\dots\)

Out of the given numbers 1, 2, 3, ..., 1000, find the largest number \(m\) that has this property: no matter which \(m\) of these numbers you delete, among the remaining \(1000 - m\) numbers there are two, of which one is divisible by the other.

An infinite sequence of digits is given. Prove that for any natural number \(n\) that is relatively prime with a number 10, you can choose a group of consecutive digits, which when written as a sequence of digits, gives a resulting number written by these digits which is divisible by \(n\).

If we are given any 100 whole numbers then amongst them it is always possible to choose one, or several of them, so that their sum gives a number divisible by 100. Prove that this is the case.

The numbers \(\lfloor a\rfloor, \lfloor 2a\rfloor, \dots , \lfloor Na\rfloor\) are all different, and the numbers \(\lfloor 1/a\rfloor, \lfloor 2/a\rfloor,\dots , \lfloor M/a\rfloor\) are also all different. Find all such \(a\).

2022 points are selected from a cube, whose edge is equal to 13 units. Is it possible to place a cube with edge of 1 unit in this cube so that there is not one selected point inside it?

30 pupils in years 7 to 11 took part in the creation of 40 maths problems. Every possible pair of pupils in the same year created the same number of problems. Every possible pair of pupils in different years created a different number of problems. How many pupils created exactly one problem?

The number \(A\) is divisible by \(1, 2, 3, \dots , 9\). Prove that if \(2A\) is presented in the form of a sum of some natural numbers smaller than 10, \(2A= a_1 +a_2 +\dots +a_k\), then we can always choose some of the numbers \(a_1, a_2, \dots , a_k\) so that the sum of the chosen numbers is equal to \(A\).