The point \(O\), lying inside the triangle \(ABC\), is connected by segments with the vertices of the triangle. Prove that the variance of the set of angles \(AOB\), \(AOC\) and \(BOC\) is less than a) \(10\pi ^2/27\); b) \(2\pi ^2/9\).
Three cyclists travel in one direction along a circular track that is 300 meters long. Each of them moves with a constant speed, with all of their speeds being different. A photographer will be able to make a successful photograph of the cyclists, if all of them are on some part of the track which has a length of \(d\) meters. What is the smallest value of \(d\) for which the photographer will be able to make a successful photograph sooner or later?
Four lamps need to be hung over a square ice-rink so that they fully illuminate it. What is the minimum height needed at which to hang the lamps if each lamp illuminates a circle of radius equal to the height at which it hangs?
In a corridor of length 100 m, 20 sections of red carpet are laid out. The combined length of the sections is 1000 m. What is the largest number there can be of distinct stretches of the corridor that are not covered by carpet, given that the sections of carpet are all the same width as the corridor?
A circle is covered with several arcs. These arcs can overlap one another, but none of them cover the entire circumference. Prove that it is always possible to select several of these arcs so that together they cover the entire circumference and add up to no more than \(720^{\circ}\).
On a plane, there are 1983 points and a circle of unit radius. Prove that there is a point on the circle, from which the sum of the distances to these points is no less than 1983.
A road of length 1 km is lit with streetlights. Each streetlight illuminates a stretch of road of length 1 m. What is the maximum number of streetlights that there could be along the road, if it is known that when any single streetlight is extinguished the street will no longer be fully illuminated?
Some open sectors – that is sectors of circles with infinite radii – completely cover a plane. Prove that the sum of the angles of these sectors is no less than \(360^\circ\).
A straight corridor of length 100 m is covered with 20 rugs that have a total length of 1 km. The width of each rug is equal to the width of the corridor. What is the longest possible total length of corridor that is not covered by a rug?
Twelve lines are drawn on the plane, passing through a point \(A\). Prove that there are two of them with angle less than \(17^{\circ}\) between them.