There are 40 identical cords. If you set any cord on fire on one side, it burns, and if you set it alight on the other side, it will not burn. Ahmed arranges the cords in the form of a square (see the figure below, each cord makes up a side of a cell). Then, Helen arranges 12 fuses. Will Ahmed be able to lay out the cords in such a way that Helen will not be able to burn all of them?
In a \(10 \times 10\) square, all of the cells of the upper left \(5 \times 5\) square are painted black and the rest of the cells are painted white. What is the largest number of polygons that can be cut from this square (on the boundaries of the cells) so that in every polygon there would be three times as many white cells than black cells? (Polygons do not have to be equal in shape or size.)
In a convex polygon, which has an odd number of vertices equal to \(2n + 1\), two independently of each other random diagonals are chosen. Find the probability that these diagonals intersect inside the polygon.
10 children were each given a bowl with 100 pieces of pasta. However, these children did not want to eat and instead started to play. One of the children started to place one piece of pasta into every other child’s bowl. What is the least amount of transfers needed so that everyone has a different number of pieces of pasta in their bowl?
100 children were each given a bowl with 100 pieces of pasta. However, these children did not want to eat and instead started to play. One of the children started to place one piece of her pasta into other children’s bowls (to whomever she wants). What is the least amount of transfers needed so that everyone has a different number of pieces of pasta in their bowl?
10 children were each given a bowl with 100 pieces of pasta. However, these children did not want to eat and instead started to play. One of the children started to place one piece of pasta into every other child’s bowl. What is the least amount of transfers needed so that everyone has a different number of pieces of pasta in their bowl?
Fred chose 2017 (not necessarily different) natural numbers \(a_1, a_2, \dots , a_{2017}\) and plays by himself in the following game. Initially, he has an unlimited supply of stones and 2017 large empty boxes. In one move Fred adds a1 stones to any box (at his choice), in any of the remaining boxes (of his choice) – \(a_2\) stones, ..., finally, in the remaining box – \(a_{2017}\) stones. His purpose is to ensure that eventually all the boxes have an equal number of stones. Could he have chosen the numbers so that the goal could be achieved in 43 moves, but is impossible for a smaller non-zero number of moves?
In one box, there are two pies with mushrooms, in another box there are two with cherries and in the third one, there is one with mushrooms and one with cherries. The pies look and weigh the same, so it’s not known what is in each one. The grandson needs to take one pie to school. The grandmother wants to give him a pie with cherries, but she is confused herself and can only determine the filling by breaking the pie, but the grandson does not want a broken pie, he wants a whole one.
a) Show that the grandmother can act so that the probability of giving the grandson a whole pie with cherries will be equal to \(2/3\).
b) Is there a strategy in which the probability of giving the grandson a whole pie with cherries is higher than \(2/3\)?
An incredible legend says that one day Stirling was considering the numbers of Stirling of the second kind. During his thoughtfulness, he threw 10 regular dice on the table. After the next throw, he suddenly noticed that in the dropped combination of points there were all of the numbers from 1 to 6. Immediately Stirling reflected: what is the probability of such an event? What is the probability that when throwing 10 dice each number of points from 1 to 6 will drop out on at least one die?
On a lottery ticket, it is necessary for Mary to mark 8 cells from 64. What is the probability that after the draw, in which 8 cells from 64 will also be selected (all such possibilities are equally probable), it turns out that Mary guessed
a) exactly 4 cells? b) exactly 5 cells? c) all 8 cells?