Two people play the following game. Each player in turn rubs out 9 numbers (at his choice) from the sequence \(1, 2, \dots , 100, 101\). After eleven such deletions, 2 numbers will remain. The first player is awarded so many points, as is the difference between these remaining numbers. Prove that the first player can always score at least 55 points, no matter how played the second.
A six-digit phone number is given. How many seven-digit numbers are there from which one can obtain this six-digit number by deleting one digit?
There is a counter on the chessboard. Two in turn move the counter to an adjacent on one side cell. It is forbidden to put a counter on a cell, which it has already visited. The one who can not make the next turn loses. Who wins with the right strategy?
The city plan is a rectangle of \(5 \times 10\) cells. On the streets, a one-way traffic system is introduced: it is allowed to go only to the right and upwards. How many different routes lead from the bottom left corner to the upper right?
27 coins are given, of which one is a fake, and it is known that a counterfeit coin is lighter than a real one. How can the counterfeit coin be found from 3 weighings on the scales without weights?
Is it possible to arrange 1000 line segments in a plane so that both ends of each line segment rest strictly inside another line segment?
Some open sectors – that is sectors of circles with infinite radii – completely cover a plane. Prove that the sum of the angles of these sectors is no less than \(360^\circ\).
It is known that in a convex \(n\)-gon (\(n > 3\)) no three diagonals pass through one point. Find the number of points (other than the vertex) where pairs of diagonals intersect.
On a line, there are 50 segments. Prove that either it is possible to find some 8 segments all of which have a shared intersection, or there can be found 8 segments, no two of which intersect.
10 magazines lie on a coffee table, completely covering it. Prove that you can remove five of them so that the remaining magazines will cover at least half of the table.