Every point in a plane, which has whole-number co-ordinates, is plotted in one of \(n\) colours. Prove that there will be a rectangle made out of 4 points of the same colour.
On a \(100 \times 100\) board 100 rooks are placed that cannot capturing one another.
Prove that an equal number of rooks is placed in the upper right and lower left cells of \(50 \times 50\) squares.
On a board of size \(8 \times 8\), two in turn colour the cells so that there are no corners of three coloured squares. The player who can’t make a move loses. Who wins with the right strategy?
On a plane there are 100 sheep-points and one wolf-point. In one move, the wolf moves by no more than 1, after which one of the sheep moves by a distance of no more than 1, after that the wolf again moves, etc. At any initial location of the points, will a wolf be able to catch one of the sheep?
Every evening Ross arrives at a random time to the bus stop. Two bus routes stop at this bus stop. One of the routes takes Ross home, and the other takes him to visit his friend Rachel. Ross is waiting for the first bus and depending on which bus arrives, he goes either home or to his friend’s house. After a while, Ross noticed that he is twice as likely to visit Rachel than to be at home. Based on this, Ross concludes that one of the buses runs twice as often as the other. Is he right? Can buses run at the same frequency when the condition of the task is met? (It is assumed that buses do not run randomly, but on a certain schedule).
The planet has \(n\) residents, some are liars and some are truth tellers. Each resident said: “Among the remaining residents of the island, more than half are liars.” How many liars are on the island?
A \(99 \times 99\) chequered table is given, each cell of which is painted black or white. It is allowed (at the same time) to repaint all of the cells of a certain column or row in the colour of the majority of cells in that row or column. Is it always possible to have that all of the cells in the table are painted in the same colour?
A Cartesian plane is coloured in in two colours. Prove that there will be two points on the plane that are a distance of 1 apart and are the same colour.
10 guests came to a party and each left a pair of shoes in the corridor (all guests have the same shoes). All pairs of shoes are of different sizes. The guests began to disperse one by one, putting on any pair of shoes that they could fit into (that is, each guest could wear a pair of shoes no smaller than his own). At some point, it was discovered that none of the remaining guests could find a pair of shoes so that they could leave. What was the maximum number of remaining guests?
How can one measure out 15 minutes, using an hourglass of 7 minutes and 11 minutes?