Nathan and Liam have numbers from \(1\) to \(2018\) written on a board. In each move, one of the players removes a number of their choosing, which is still on the board, together with all its remaining divisors. Liam goes first. The last person to remove a number wins. Who has the winning strategy?
Alex and Priyanka have a chessboard and a queen on it. Each of the players can only move the queen to the top, to the right, or along a diagonal – to the top and right (like the queen moves, but only in three directions out of all eight). The person who places the queen in the top right corner wins. The chessboard is a normal \(8 \times 8\) board. The queen starts four squares to the right from the bottom left corner. If Priyanka starts, who will win the game?
A chequered strip of \(1 \times N\) is given. Two players play the game. The first player puts a cross into one of the free cells on his turn, and subsequently the second player puts a nought in another one of the cells. It is not allowed for there to be two crosses or two noughts in two neighbouring cells. The player who is unable to make a move loses.
Which of the players can always win (no matter how their opponent played)?
A pack of 36 cards was placed in front of a psychic face down. He calls the suit of the top card, after which the card is opened, shown to him and put aside. After this, the psychic calls out the suit of the next card, etc. The task of the psychic is to guess the suit as many times as possible. However, the card backs are in fact asymmetrical, and the psychic can see in which of the two positions the top card lies. The deck is prepared by a bribed employee. The clerk knows the order of the cards in the deck, and although he cannot change it, he can prompt the psychic by having the card backs arranged in a way according to a specific arrangement. Can the psychic, with the help of such a clue, ensure the guessing of the suit of
a) more than half of the cards;
b) no less than 20 cards?
Hannah and Emma have three coins. On different sides of one coin there are scissors and paper, on the sides of another coin – a rock and scissors, on the sides of the third – paper and a rock. Scissors defeat paper, paper defeats rock and rock wins against scissors. First, Hannah chooses a coin, then Emma, then they throw their coins and see who wins (if the same image appears on both, then it’s a draw). They do this many times. Is it possible for Emma to choose a coin so that the probability of her winning is higher than that of Hannah?
10 children were each given a bowl with 100 pieces of pasta. However, these children did not want to eat and instead started to play. One of the children started to place one piece of pasta into every other child’s bowl. What is the least amount of transfers needed so that everyone has a different number of pieces of pasta in their bowl?
100 children were each given a bowl with 100 pieces of pasta. However, these children did not want to eat and instead started to play. One of the children started to place one piece of her pasta into other children’s bowls (to whomever she wants). What is the least amount of transfers needed so that everyone has a different number of pieces of pasta in their bowl?
Fred chose 2017 (not necessarily different) natural numbers \(a_1, a_2, \dots , a_{2017}\) and plays by himself in the following game. Initially, he has an unlimited supply of stones and 2017 large empty boxes. In one move Fred adds a1 stones to any box (at his choice), in any of the remaining boxes (of his choice) – \(a_2\) stones, ..., finally, in the remaining box – \(a_{2017}\) stones. His purpose is to ensure that eventually all the boxes have an equal number of stones. Could he have chosen the numbers so that the goal could be achieved in 43 moves, but is impossible for a smaller non-zero number of moves?
In one box, there are two pies with mushrooms, in another box there are two with cherries and in the third one, there is one with mushrooms and one with cherries. The pies look and weigh the same, so it’s not known what is in each one. The grandson needs to take one pie to school. The grandmother wants to give him a pie with cherries, but she is confused herself and can only determine the filling by breaking the pie, but the grandson does not want a broken pie, he wants a whole one.
a) Show that the grandmother can act so that the probability of giving the grandson a whole pie with cherries will be equal to \(2/3\).
b) Is there a strategy in which the probability of giving the grandson a whole pie with cherries is higher than \(2/3\)?
A White Rook pursues a black bishop on a board of \(3 \times 1969\) cells (they walk in turn according to the usual rules). How should the rook play to take the bishop? White makes the first move.