Hannah Montana wants to leave the round room which has six doors, five of which are locked. In one attempt she can check any three doors, and if one of them is not locked, then she will go through it. After each attempt her friend Michelle locks the door, which was opened, and unlocks one of the neighbouring doors. Hannah does not know which one exactly. How should she act in order to leave the room?
There are 30 students in a class: excellent students, mediocre students and slackers. Excellent students answer all questions correctly, slackers are always wrong, and the mediocre students answer questions alternating one by one correctly and incorrectly. All the students were asked three questions: “Are you an excellent pupil?”, “Are you a mediocre student?”, “Are you a slacker?”. 19 students answered “Yes” to the first question, to the second 12 students answered yes, to the third 9 students answered yes. How many mediocre students study in this class?
Gary drew an empty table of \(50 \times 50\) and wrote on top of each column and to the left of each row a number. It turned out that all 100 written numbers are different, and 50 of them are rational, and the remaining 50 are irrational. Then, in each cell of the table, he wrote down a product of numbers written at the top of its column and to the left of the row (the “multiplication table”). What is the largest number of products in this table which could be rational numbers?
The triangle \(C_1C_2O\) is given. Within it the bisector \(C_2C_3\) is drawn, then in the triangle \(C_2C_3O\) – bisector \(C_3C_4\) and so on. Prove that the sequence of angles \(\gamma_n = C_{n + 1}C_nO\) tends to a limit, and find this limit if \(C_1OC_2 = \alpha\).
The White Rook pursues a black horse on a board of \(3 \times 1969\) cells (they walk in turn according to the usual rules). How should the rook play in order to take the horse? White makes the first move.
In a set there are 100 weights, each two of which differ in mass by no more than 20 g. Prove that these weights can be put on two cups of weighing scales, 50 pieces on each one, so that one cup of weights is lighter than the other by no more than 20 g.
Peter bought an automatic machine at the store, which for 5 pence multiplies any number entered into it by 3, and for 2 pence adds 4 to any number. Peter wants, starting with a unit that can be entered free of charge to get the number 1981 on the machine number whilst spending the smallest amount of money. How much will the calculations cost him? What happens if he wants to get the number 1982?
A game with 25 coins. In a row there are 25 coins. For a turn it is allowed to take one or two neighbouring coins. The player who has nothing to take loses.
Replace each letter in the diagram with a digit from 1 to 9 so that all the inequalities are satisfied,
and then arrange the letters in numerical order of their numerical values. What word did you get?
A traveller rents a room in an inn for a week and offers the innkeeper a chain of seven silver links as payment – one link per day, with the condition that they will be payed everyday. The innkeeper agrees, with the condition that the traveller can only cut one of the links. How did the traveller manage to pay the innkeeper?