Problems

Age
Difficulty
Found: 322

In a corridor of length 100 m, 20 sections of red carpet are laid out. The combined length of the sections is 1000 m. What is the largest number there can be of distinct stretches of the corridor that are not covered by carpet, given that the sections of carpet are all the same width as the corridor?

Izzy wrote a correct equality on the board: \(35 + 10 - 41 = 42 + 12 - 50\), and then subtracted 4 from both parts: \(35 + 10 - 45 = 42 + 12 - 54\). She noticed that on the left hand side of the equation all of the numbers are divisible by 5, and on the right hand side by 6. Then she took 5 outside of the brackets on the left hand side and 6 on the right hand side and got \(5(7 + 2 - 9)4 = 6(7 + 2 - 9)\). Having simplified both sides by a common multiplier, Izzy found that \(5 = 6\). Where did she go wrong?

On an island there are 1,234 residents, each of whom is either a knight (who always tells the truth) or a liar (who always lies). One day, all of the inhabitants of the island were broken up into pairs, and each one said: “He is a knight!" or “He is a liar!" about his partner. Could it eventually turn out to be that the number of “He is a knight!" and “He is a liar!" phrases is the same?

Solving the problem: “What is the solution of the expression \(x^{2000} + x^{1999} + x^{1998} + 1000x^{1000} + 1000x^{999} + 1000x^{998} + 2000x^3 + 2000x^2 + 2000x + 3000\) (\(x\) is a real number) if \(x^2 + x + 1 = 0\)?”, Vasya got the answer of 3000. Is Vasya right?

The best student in the class, Katie, and the second-best, Mike, tried to find the minimum 5-digit number which consists of different even numbers. Katie found her number correctly, but Mike was mistaken. However, it turned out that the difference between Katie and Mike’s numbers was less than 100. What are Katie and Mike’s numbers?

The old shoemaker Carl sewed some boots and sent his son Hans to the market to sell them for £25. Two disabled people came to the boy’s market stall (one without a left leg, the other without a right one) and was asked to sell each of them a boot. Hans agreed and sold each boot for £12.50.

When the boy came home and told the whole story to his father, Carl decided that his son should have sold the boots to the disabled buyers for less – each for £10. He gave Hans £5 and ordered him to return £2.50 to each disabled buyer.

While the boy was looking for the disabled people at the market, he saw that someone was selling sweets and as could not resist, spent £3 on sweets. After that, he found the disabled buyers and gave them the remaining money – each got £1. Returning home, Hans realised how badly he had acted. He told his father and asked for forgiveness. The shoemaker was very angry and punished his son by sending him to his room.

Sitting in his room, Hans thought about the day’s events. It turned out that since he returned £1 to each buyer, they paid £11.50 for each boot: \(12.50 - 1 = 11.50\). So, the boots cost £23: \(2 \times 11.50 = 23\). And Hans spent £3 on sweets, therefore, it total, there were £26: \(23 + 3 = 26\). But there were only £25! Where did the extra pound come from?

A three-digit number \(ABB\) is given, the product of the digits of which is a two-digit number \(AC\) and the product of the digits of this number is \(C\) (here, as in mathematical puzzles, the digits in the numbers are replaced by letters where the same letters correspond to the same digits and different letters to different digits). Determine the original number.

A girl chose a 4-letter word and replaced each letter with the corresponding number in the alphabet. The number turned out to be 2091425. What word did she choose?