A traveller who came to the planet hired a local as a guide. They went for a walk and saw another alien. The traveller sent the guide to find out to whether this native is a liar or truth teller. The guide returned and said: “The native says that they are a truth teller.” Who was the guide: a liar or a truth teller?
Three people are talking at dinner: Greyson, Blackburne and Reddick. The black-haired person told Greyson: “It is curious that one of us is grey-haired, the other is black-haired, and the third is red-haired, but no one has hair colour that matches their surname.” What colour hair does each of the men chatting have?
In the government of the planet of liars and truth tellers there are \(101\) ministers. In order to reduce the budget, it was decided to reduce the number of ministers by \(1.\) But each of the ministers said that if they were to be removed from the government, then the majority of the remaining ministers would be liars. How many truth tellers and how many liars are there in the government?
A hostess bakes a cake for some guests. Either 10 or 11 people can come to her house. What is the smallest number of pieces she needs to cut the cake into (in advance) so that it can be divided equally between 10 and 11 guests?
Father Christmas has an infinite number of sweets. A minute before the New Year, Father Christmas gives some children 100 sweets, while the Snow Maiden takes one sweet from them. Within half a minute before the New Year, Father Christmas gives the children 100 more sweets, and the Snow Maiden again takes one sweet. The same is repeated for 15 seconds, for 7.5 seconds, etc. until the new Year. Prove that the Snow Maiden will be able to take away all the sweets from the children by the New Year.
Let \(x\) be a natural number. Among the statements:
\(2x\) is more than 70;
\(x\) is less than 100;
\(3x\) is greater than 25;
\(x\) is not less than 10;
\(x\) is greater than 5;
three are true and two are false. What is \(x\)?
Theorem: All people have the same eye color.
"Proof" by induction: This is clearly true for one person.
Now, assume we have a finite set of people, denote them as \(a_1,\, a_2,\, ...,\,a_n\), and the
inductive hypothesis is true for all smaller sets. Then if we leave
aside the person \(a_1\), everyone else
\(a_2,\, a_3,\,...,\,a_n\) has the same
color of eyes and if we leave aside \(a_n\), then all \(a_1,\, a_2,\,a_3,...,\,a_{n-1}\) also have
the same color of eyes. Thus any \(n\)
people have the same color of eyes.
Find a mistake in this "proof".
We meet a group of people, all of whom are either knights or liars. Knights always tell the truth and liars always lie. Prove that it’s impossible for someone to say “I’m a liar".
We’re told that Leonhard and Carl are knights or liars (the two of them could be the same or one of each). They have the following conversation.
Leonhard says “If \(49\) is a prime number, then I am a knight."
Carl says “Leonhard is a liar".
Prove that Carl is a liar.
Today you saw two infinitely long buses with seats numbered as \(1,2,3,...\) carrying infinitely many guests each arriving at the full hotel. How do you accommodate everyone?