Problems

Age
Difficulty
Found: 6

Two circles of radius \(R\) touch at point \(B\). On one of them, point \(D\) is chosen and on the other point \(E\) is chosen. These points have a property of \(\angle DBE = 90^{\circ}\). Prove that \(DE = 2R\).

image

Two circles of radius \(R\) intersect at points \(B\) and \(D\). Consider the perpendicular bisector of the segment \(BD\). This line meets the two circles again at points \(F\) and \(G\), both chosen on the same side of \(BD\). Prove that \[BD^2 + FG^2 = 4R^2.\]

Inside the rectangle \(ABCD\), the point \(E\) is taken. Prove that there exists a convex quadrilateral with perpendicular diagonals of lengths \(AB\) and \(BC\) whose sides are equal to \(AE\), \(BE\), \(CE\), \(DE\).

Two circles \(c\) and \(d\) are tangent at point \(B\). Two straight lines intersecting the first circle at points \(D\) and \(E\) and the second circle at points \(G\) and \(F\) are drawn through the point \(B\). Prove that \(ED\) is parallel to \(FG\).

Let \(ABCD\) be a square and let \(P\) be any point in the plane. For each side of the square, take its midpoint. Reflect \(P\) about each of these four midpoints. Show that the four reflected points form the vertices of a square.

The points \(A\) and \(B\) and the line \(l\) are given on a plane. On which trajectory does the intersection point of the medians of the triangles \(ABC\) move, if the point \(C\) moves along the line \(l\)?