For an odd number \(N\) denote by \(A\) the minimal positive difference between prime divisors of \(N\), denote by \(B\) the minimal positive difference between composite divisors of \(N\). Usually we have \(A<B\), but can we have \(A>B\)? (Disregard numbers such as \(15\) where one of \(A\) or \(B\) is not defined)
A natural number \(N\) is called perfect if it equals the sum of its divisors, except for \(N\) itself. Prove that if \(2^r-1\) is prime, then \((2^r-1)2^{r-1}\) is a perfect number. Are there any odd perfect numbers?
Let \(a,b,c >0\) be positive real numbers with \(abc \leq 1\). Prove that \[\frac{a}{c} + \frac{b}{a} + \frac{c}{b} \geq a+b+c.\]
Let \(a,b,c >0\) be positive real numbers. Prove that \[(1+a)(1+b)(1+c)\geq 8\sqrt{abc}.\]
For a natural number \(n\) prove that \(n! \leq (\frac{n+1}{2})^n\), where \(n!\) is the factorial \(1\times 2\times 3\times ... \times n\).
Prove the \(AM-GM\) inequality for \(n=2\). Namely for two non-negative real numbers \(a\) and \(b\) we have \(2\sqrt{ab} \leq a+b\).
Prove the Cauchy-Schwartz inequality: for a natural number \(n\) and real numbers \(a_1\), \(a_2\), ..., \(a_n\) and \(b_1\), \(b_2\), ..., \(b_n\) we have \[(a_1b_1 + a_2b_2 + ... + a_nb_n)^2 \leq (a_1^2+a_2^2+...+a_n^2)(b_1^2+b_2^2+...+b_n^2).\]
Prove the \(GM-HM\) inequality for positive real numbers \(a_1\), \(a_2\), ..., \(a_n\): \[\sqrt[n]{a_1a_2...a_n} \geq \frac{n}{\frac{1}{a_1} + ... \frac{1}{a_n}}.\]
From IMO 1999. Let \(n\geq 2\) be an integer. Determine the least possible constant \(C\) such that the inequality \[\sum_{1\leq i<j\leq n} x_ix_j(x_i^2 + x_j^2) \leq C(\sum_{1\leq i\leq n}x_i)^4\] holds for all non-negative real numbers \(x_i\). For this constant \(C\) find out when the equality holds.
Proposed by USA for IMO 1993. For positive real numbers \(a,b,c,d\) prove that \[\frac{a}{b+2c+3d} + \frac{b}{c+2d+3a} + \frac{c}{d+2a+3b} + \frac{d}{a+2b+3c} \geq \frac{2}{3}.\]