Prove there are no integer solutions for the equation \(3x^2 + 2 = y^2\).
On a function \(f (x)\), defined on the entire real line, it is known that for any \(a>1\) the function \(f (x) + f (ax)\) is continuous on the whole line. Prove that \(f (x)\) is also continuous on the whole line.
On the dining room table, there is a choice of six dishes. Every day Valentina takes a certain set of dishes (perhaps, she does not take a single dish), and this set of dishes should be different from all of the sets that she took in the previous days. What is the maximum number of days that Valentina will be able to eat according to such rules and how many meals will she eat on average during the day?
For which \(n > 3\), can a set of weights with masses of \(1, 2, 3, ..., n\) grams be divided into three groups of equal mass?
A family went to the bridge at night. The dad can cross it in 1 minute, the mum in 2 minutes, the child in 5 minutes, and the grandmother in 10 minutes. They have one flashlight. The bridge only withstands two people. How can they cross the bridge in 17 minutes? (If two people cross, then they pass with the lower of the two speeds. They cannot pass along the bridge without a flashlight. They cannot shine the light from afar. They cannot carry anyone in their arms. They cannot throw the flashlight.)
Prove that the infinite decimal \(0.1234567891011121314 \dots\) (after the decimal point, all of the natural numbers are written out in order) is an irrational number.
There are \(n\) cities in a country. Between each two cities an air service is established by one of two airlines. Prove that out of these two airlines at least one is such that from any city you can get to any other city whilst traveling on flights only of this airline.
Several stones weigh 10 tons together, each weighing not more than 1 ton.
a) Prove that this load can be taken away in one go on five three-ton trucks.
b) Give an example of a set of stones satisfying the condition for which four three-ton trucks may not be enough to take the load away in one go.
Three people play table tennis, and the player who lost the game gives way to the player who did not participate in it. As a result, it turned out that the first player played 10 games and the second played 21 games. How many games did the third player play?
In the secret service, there are \(n\) agents – 001, 002, ..., 007, ..., \(n\). The first agent monitors the one who monitors the second, the second monitors the one who monitors the third, etc., the nth monitors the one who monitors the first. Prove that \(n\) is an odd number.