Problems

Age
Difficulty
Found: 133

A \(3\times 3\) square is filled with the numbers \(-1, 0, +1\). Prove that two of the 8 sums in all directions – each row, column, and diagonal – will be equal.

The numbers \(1, 2, \dots , 9\) are divided into three groups. Prove that the product of the numbers in one of the groups will always be no less than 72.

Some whole numbers are placed into a \(10\times 10\) table, so that the difference between any two neighbouring, horizontally or vertically adjacent, squares is no greater than 5. Prove that there will always be two identical numbers in the table.

11 scouts are working on 5 different badges. Prove that there will be two scouts \(A\) and \(B\), such that every badge that \(A\) is working towards is also being worked towards by \(B\).

Each of the 102 pupils of one school is friends with at least 68 others. Prove that among them there are four who have the same number of friends.