Problems

Age
Difficulty
Found: 246

Several pieces of carpet are laid along a corridor. Pieces cover the entire corridor from end to end without omissions and even overlap one another, so that over some parts of the floor lie several layers of carpet. Prove that you can remove a few pieces, perhaps by taking them out from under others and leaving the rest exactly in the same places they used to be, so that the corridor will still be completely covered and the total length of the pieces left will be less than twice the length corridor.

All integers from 1 to \(2n\) are written in a row. Then, to each number, the number of its place in the row is added, that is, to the first number 1 is added, to the second – 2, and so on.

Prove that among the sums obtained there are at least two that give the same remainder when divided by \(2n\).

Is it possible to place the numbers \(1, 2,\dots 12\) around a circle so that the difference between any two adjacent numbers is 3, 4, or 5?

The numbers \(1, 2, 3, \dots , 99\) are written onto 99 blank cards in order. The cards are then shuffled and then spread in a row face down. The numbers \(1, 2, 3, \dots, 99\) are once more written onto in the blank side of the cards in order. For each card the numbers written on it are then added together. The 99 resulting summations are then multiplied together. Prove that the result will be an even number.

The sum of 100 natural numbers, each of which is no greater than 100, is equal to 200. Prove that it is possible to pick some of these numbers so that their sum is equal to 100.

The numbers \(a_1, a_2, \dots , a_{1985}\) are the numbers \(1, 2, \dots , 1985\) rearranged in some order. Each number \(a_k\) is multiplied by its number \(k\), and then the largest number is chosen among the resulting 1985 products. Prove that it is not less than \(993^2\).

The product of 1986 natural numbers has exactly 1985 different prime factors. Prove that either one of these natural numbers, or the product of several of them, is the square of a natural number.

The product of a group of 48 natural numbers has exactly 10 prime factors. Prove that the product of some four of the numbers in the group will always give a square number.

Prove that from any 27 different natural numbers less than 100, two numbers that are not coprime can be chosen.