On a ring road at regular intervals there are 25 posts, each with a policeman. The police are numbered in some order from 1 to 25. It is required that they cross the road so that there is a policeman on each post, but so that number 2 was clockwise behind number 1, number 3 was clockwise behind number 2, and so on. Prove that if you organised the transition so that the total distance travelled was the smallest, then one of the policemen will remain at his original post.
Each day, from Monday to Friday, an old man went to the sea and threw in a net to catch fish. On each day the man caught no more fish than on the previous day. In total over the 5 days the man caught exactly 100 fish. What is the minimum total number of fish the man could have caught on Monday, Wednesday, and Friday.
The numbers \(1, 2, 3,\dots , 10\) are written around a circle in a particular order. Peter calculated the sum of each of the 10 possible groups of three adjacent numbers around the circle and wrote down the smallest value he had calculated. What is the largest possible value he could have written down?
In a group of six people, any five can sit down at a round table so that every two neighbours know each other.
Prove that the entire group can be seated at the round table so that every two neighbours will know each other.
A pack of 36 cards was placed in front of a psychic face down. He calls the suit of the top card, after which the card is opened, shown to him and put aside. After this, the psychic calls out the suit of the next card, etc. The task of the psychic is to guess the suit as many times as possible. However, the card backs are in fact asymmetrical, and the psychic can see in which of the two positions the top card lies. The deck is prepared by a bribed employee. The clerk knows the order of the cards in the deck, and although he cannot change it, he can prompt the psychic by having the card backs arranged in a way according to a specific arrangement. Can the psychic, with the help of such a clue, ensure the guessing of the suit of
a) more than half of the cards;
b) no less than 20 cards?
What is the smallest number of cells that can be chosen on a \(15\times15\) board so that a mouse positioned on any cell on the board touches at least two marked cells? (The mouse also touches the cell on which it stands.)
A box contains 111 red, blue, green, and white marbles. It is known that if we remove 100 marbles from the box, without looking, we will always have removed at least one marble of each colour. What is the minimum number of marbles we need to remove to guarantee that we have removed marbles of 3 different colours?
A box contains 100 red, blue, and white marbles. It is known that if we remove 26 marbles from the box, without looking, we will always have removed at least 10 marbles of one colour. What is the minimum number of marbles we need to remove to guarantee that we have removed 30 marbles of the same colour?
What is the largest number of horses that can be placed on an \(8\times8\) chessboard so that no horse touches more than seven of the others?
Harry thought of two positive numbers \(x\) and \(y\). He wrote down the numbers \(x + y\), \(x - y\), \(xy\) and \(x/y\) on a board and showed them to Sam, but did not say which number corresponded to which operation.
Prove that Sam can uniquely figure out \(x\) and \(y\).